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The crossover between short-range and long-range (LR) universal behaviors remains a central theme in the

physics of LR interacting systems. The competition between LR coupling and the Berezinskii–Kosterlitz–Thouless

mechanism makes the problem more subtle and less understood in the two-dimensional (2D) XY model, a corner-

stone for investigating low-dimensional phenomena and their implications in quantum computation. We study

the 2D XY model with algebraically decaying interaction ∼1/𝑟2+𝜎. Utilizing an advanced update strategy, we

conduct LR Monte Carlo simulations of the model up to a linear size of 𝐿 = 8192. Our results demonstrate

continuous phase transitions into a ferromagnetic phase for 𝜎 < 2, which exhibit the simultaneous emergence of

a long-ranged order and a power-law decaying correlation function due to the Goldstone mode. Furthermore,

we find logarithmic scaling behaviors in the low-temperature phase at 𝜎 = 2. The observed scaling behaviors in

the low-temperature phase for 𝜎 ≤ 2 agree with our theoretical analysis. Our findings request further theoretical

understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.
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1. Introduction. Long-range (LR) interacting sys-

tems have been studied in statistical and condensed mat-

ter physics for decades, unveiling a range of exotic phys-

ical phenomena. [1–3] This interest has recently intensi-

fied, driven by the experimental realizations of such sys-

tems in atomic, molecular, and optical (AMO) setups. [4–10]

In particular, the two-dimensional (2D) XY model with

LR interactions has gained notable attention. [11–14] With-

out LR interactions, the model undergoes the cele-

brated Berezinskii–Kosterlitz–Thouless (BKT) transition

driven by topological defects [15] and serves as a fun-

damental cornerstone for understanding low-dimensional

superfluidity [16] and superconductivity. [17–19] Upon incor-

porating LR interactions, however, it becomes a pivotal

framework for exploring the complex interplay between

LR interactions and the BKT mechanism. [15] Most impor-

tantly, recent implementations of the model in trapped ion

setups and Rydberg systems demonstrate its significance

in quantum computation. [10,13,14]

The XY model belongs to the classical 𝑂(𝒩 ) spin

models with 𝒩 = 2. The 𝑑-dimensional LR 𝑂(𝒩 )

spin model with power-law decaying ∼ 1/𝑟𝑑+𝜎 interac-

tions has been extensively investigated, particularly re-

garding the renormalization group (RG) relevance of the

LR interactions. [20–27] In such systems, a threshold 𝜎* sep-

arates the LR and short-range (SR) critical behaviors. For

𝜎 > 𝜎*, the system is in the same universality class as its

nearest-neighbor (NN) counterpart, while for 𝜎 ≤ 𝜎*, the

LR interactions become relevant, yielding distinct critical

properties. [21–23] The value of 𝜎* was first obtained in the

seminal paper of Fisher et al., [21] where a second-order 𝜖-

expansion approach suggests 𝜎* = 2. Later, a new thresh-

old 𝜎* = 2−𝜂SR was proposed by Sak, [22] currently known

as Sak’s criterion, where 𝜂SR is the anomalous dimension

in the SR limit. While several numerical studies seem-

ingly support Sak’s criterion, [24,28,29] other investigations

and theoretical analyses favor the 𝜎* = 2 scenario. [30–32]

The problem becomes more subtle for the 2D XY

model. In the SR limit, the Mermin–Wagner theorem for-

bids the formation of a long-range order (LRO) phase. [33]

Yet, the model undergoes a BKT transition, entering a

quasi-long-range order (QLRO) phase. [15] Applying Sak’s

criterion to the 2D XY model can be especially nuanced

because, rather than a single fixed point, the SR critical

behavior is governed by an entire line of fixed points with

a temperature-dependent anomalous dimension 𝜂(𝑇 ), and

the phase transition is of topological type. [11,12,15] Conven-

tional strategies for analyzing the XY model, such as map-

ping it to Coulomb gas or the sine-Gordon model, [34,35]

might fail in the presence of LR interaction. [11] Further-
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more, the numerical study of this model faces consider-

able difficulties, including logarithmic corrections owing

to BKT universality, [15,36] severe finite-size effects, and

the escalating computational costs associated with LR

interactions. [37,38]

Recent field-theoretical studies of the 2D LR XYmodel

predict an exotic phase diagram. [11,12] An intermediate

QLRO phase is stabilized for 1.75 < 𝜎 < 2, below

which the system enters an LRO phase. Intriguingly, a

similar study on the LR Villain model reveals different

behavior, [39] despite both models belonging to the same

universality class in the SR limit. [40,41] This deviation

is particularly notable given that such an intermediate

QLRO phase is absent in previous numerical results of the

LR diluted XY model in 2D, [42] a model expected to share

the same critical behaviors as the 2D LR XY model. [42,43]

In this Letter, we study the 2D LR XY model with

power-law decaying ∼ 1/𝑟𝑑+𝜎 interactions by large-scale

simulations up to a linear size of 𝐿 = 8192. The phase

diagram of the model, as depicted in Fig. 1, is character-

ized by three distinct regimes: the classical (𝜎 ≤ 1), the

non-classical (1 < 𝜎 ≤ 2), and the SR regime (𝜎 > 2). As

expected, for 𝜎 < 1, the critical behaviors are governed by

Gaussian mean-field theory, [23] while for 𝜎 > 2, the sys-

tem exhibits BKT transitions. The non-classical regime

(1 < 𝜎 ≤ 2) is of particular interest. The finite-size scaling

(FSS) behaviors in this regime demonstrate that the sys-

tem undergoes a second-order transition (Fig. 2). Rather

than focusing on refining the estimates of the 𝜎-dependent

critical exponents, we investigate the low-𝑇 and high-𝑇

properties of the model. In the low-𝑇 phase for 𝜎 ≤ 2,

we show that the LR ferromagnetic order emerges, i.e.,

magnetization density 𝑀 > 0. The two-point correlation

function decays as a power law 𝑔(𝑥) ≃ 𝑔0 + 𝑐𝑥−𝜂ℓ and sat-

urates to a constant 𝑔0 = 𝑀2, as distance 𝑥 → ∞. Here,

the magnetic anomalous exponent 𝜂ℓ = 2− 𝜎 can be the-

oretically derived from the Goldstone-mode (transverse)

fluctuations of the order parameter. For the marginal case

𝜎 = 2 (𝜂ℓ = 0), logarithmic scaling behaviors are clearly

observed, though a theoretical derivation is still lacking. In

the high-𝑇 paramagnetic phase, the growth behavior of the

correlation length 𝜉 is carefully examined as temperature 𝑇

decreases and approaches the critical point 𝑇c. For 𝜎 > 2,

𝜉 grows exponentially as ∼e𝑏/
√
𝑡 with 𝑡 ≡ (𝑇 − 𝑇c)/𝑇c be-

ing the reduced temperature. The data of 𝜉 at different 𝜎

collapse on top of each other, clearly illustrating the BKT

physics. However, for 𝜎 ≤ 2, the growth of 𝜉 deviates

more and more from the BKT curve as 𝐿 increases, and a

power-law behavior is asymptotically observed, clearly in-

dicating a second-order phase transition. Strong evidence

for 𝜎* = 2 is also found by studying the low-𝑇 transition

from the QLRO phase to the LRO ferromagnet as 𝜎 crosses

𝜎 = 2. Finally, we determine with high precision the criti-

cal points and critical exponents in the non-classical regime

1 < 𝜎 ≤ 2. More technical details and extensive analysis

are presented in Ref. [44].
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Fig. 1. Phase diagram of the LR XY model in 2D. The SR

regime (𝜎 > 2) exhibits BKT transitions (brown line) into

the QLRO phase. In the non-classical regime (1 < 𝜎 ≤ 2),

the system undergoes a second-order transition (red line)

into an LRO phase. Finally, in the classical regime (𝜎 ≤ 1),

the transition (purple lines) is described by the Gaussian

theory. Symbol 𝑇CG
c stands for the critical temperatures for

the complete-graph case and 𝑇NN
c for the nearest-neighbor

(NN) case.
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Fig. 2. Emergence of the LRO for 𝜎 ≤ 2. As temperature 𝑇 decreases, the correlation-length ratio 𝜉/𝐿 for (a)

𝜎 = 1.75 and (b) 𝜎 = 2 displays typical scaling behaviors for a system entering into a LR ordered phase via a

continuous phase transition at 𝑇c: it has an asymptotically universal value at 𝑇 = 𝑇c and diverges for 𝑇 < 𝑇c as

𝐿 increases. In contrast, for (c) 𝜎 = 3, which has a BKT transition, 𝜉/𝐿 for different 𝐿 quickly converges to a

smooth function for 𝑇 < 𝑇c, as a consequence of the algebraically decaying QLRO. The top left insets illustrate the

divergence of (𝜉/𝐿)2 in the low-𝑇 phase for 𝜎 = 1.75 and 2 compared to the quick convergence for the 𝜎 = 3 case.

We find a power-law divergence (𝜉/𝐿)2 ∼ 𝐿𝜂ℓ with a 𝑇 -independent exponent 𝜂ℓ for 𝜎 = 1.75 and a logarithmic

divergence ∼ ln𝐿 for the marginal case 𝜎 = 2 (see the text for details). Moreover, the bottom right insets for

𝜎 = 1.75 and 2 plot the residual magnetization density 𝑀2
r against 𝐿−𝜔 , with 𝜔 = 0.65 and 0.4, respectively. The

extrapolation of 𝑀2
r converges to positive values in the 𝐿 → ∞ limit, providing direct evidence for the ferromagnetic

order in the low-𝑇 phase. In contrast, for 𝜎 = 3, 𝑀2 exhibits an algebraic decay characteristic of a QLRO phase.
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2. Model, Algorithm and Observables. We consider the

LR interacting XY model on a square lattice of side length

𝐿, described by the Hamiltonian 𝐻 = −
∑︀

𝑖<𝑗 𝐽/𝑟
𝑑+𝜎
𝑖,𝑗 𝑆𝑖 ·

𝑆𝑗 , where 𝑆𝑖 and 𝑆𝑗 are 2-component unit spin vectors

at sites 𝑖 and 𝑗, respectively, and 𝑟𝑖,𝑗 denotes the dis-

tance between these sites. The summation encompasses all

unique pairs of spins. With periodic boundary conditions,

each spin interacts with the other 𝑁 − 1 spins (𝑁 = 𝐿2)

via the shortest distance. In addition, the interaction

strength 𝐽 is normalized such that
∑︀

𝑗>0 𝐽/𝑟
2+𝜎
0,𝑗 = 4, to

satisfy the strict extensibility of the total energy and thus

to reduce unnecessary finite-size corrections. [29,44–46] The

Boltzmann weight of a configuration is exp(−𝛽𝐻), with

𝛽 = 1/𝑘B𝑇 the inverse temperature (𝑘B = 1 is set).

Substantial computational expense is the primary fac-

tor hindering large-scale simulations of the model. In con-

ventional Monte Carlo methods, it scales as 𝒪(𝑁) per spin

update due to LR interactions. Specialized techniques

have been developed to efficiently simulate LR interact-

ing systems. [29,37,38,46] We employ an enhanced version of

the Luijten–Blöte algorithm, [37,46] which utilizes cluster

spin updates [47,48] alongside an exceedingly efficient clus-

ter construction procedure (see Ref. [44] for details). This

technique significantly accelerates the construction of clus-

ters, rendering the computational time per spin indepen-

dent of 𝑁 . Specifically, we incorporate the clock sampling

technique [38] to efficiently sample bond activation events,

substantially improving computational speed and memory

usage. It also eliminates the need for a look-up table and

alleviates truncation errors stemming from discrete cumu-

lative probability integration approximations. [46]

Various physical quantities are measured. For a

given configuration, we compute the magnetization den-

sity 𝑀 = 𝐿−2
⃒⃒∑︀

𝑖 𝑆𝑖

⃒⃒
, and its Fourier transform 𝑀𝑘 =

𝐿−2
⃒⃒∑︀

𝑖 𝑆𝑖e
i𝑘·𝑟𝑖

⃒⃒
. Here, 𝑟𝑖 denotes the coordinates of site

𝑖 and 𝑘 = (2𝜋/𝐿, 0) is the smallest wave vector along the

𝑥-axis. After thermalization, we obtain the susceptibil-

ity 𝜒 = 𝐿2⟨𝑀2⟩, the Fourier-transformed susceptibility

𝜒𝑘 = 𝐿2⟨𝑀2
𝑘 ⟩, where ⟨·⟩ represents the statistical average.

We also measure the second-moment correlation length

𝜉2nd = 1/ [2 sin(|𝑘|/2)]
√︀

⟨𝑀2⟩/⟨𝑀2
𝑘 ⟩ − 1. In the disor-

dered phase, it is asymptotically equivalent to the conven-

tional exponential correlation length 𝜉exp in the thermody-

namic limit, but is much easier to compute as it requires no

fitting. At criticality and in the ordered phase, however,

their behaviors differ. At the critical point, 𝜉exp is ill-

defined due to the algebraically decaying correlation func-

tions, while 𝜉2nd scales proportionally to the system size 𝐿,

and the ratio 𝜉2nd/𝐿 converges to a universal value. Simi-

larly, in the QLRO phase, 𝜉2nd/𝐿 converges to a universal

function of 𝛽. In the ordered phase, 𝜉2nd diverges due to

finite ⟨𝑀2⟩ and vanishing ⟨𝑀2
𝑘 ⟩ in the 𝐿 → ∞ limit. For

the ordered phase without Goldstone mode, 𝜉2nd typically

scales as ∼𝐿1+𝑑/2 while 𝜉exp remains finite. In contrast,

in systems with Goldstone modes, 𝜉exp is again ill-defined,

and 𝜉2nd scales as ∼𝐿1+(2−𝑑+𝜂𝑙)/2. Overall, 𝜉2nd serves as a

robust and informative indicator of different phases. [49–53]

For brevity, we refer to 𝜉2nd as 𝜉 throughout this paper.

We use the standard binning and jackknife methods to

estimate the error bars.

3. Results. Dimensionless quantities, such as the

Binder cumulant [54] and the second-moment correlation

length ratio 𝜉/𝐿, [49–52] are powerful tools for studying

phase transitions. Figure 2 shows that for 𝜎 ≤ 2, the 𝜉/𝐿

curves display the typical FSS behaviors of a second-order

transition, i.e., 𝜉/𝐿 curves of different 𝐿 share a univer-

sal intersection point at 𝑇 = 𝑇c and diverge for 𝑇 < 𝑇c

as 𝐿 increases. [49–52] We perform least-squares fits using

the standard FSS technique to accurately estimate the

critical points and critical exponents in the non-classical

regime 1 ≤ 𝜎 ≤ 2, as presented in Table 1. As a ref-

erence, characteristic FSS behavior of BKT transitions is

observed for 𝜎 = 3, where 𝜉/𝐿 curves converge to a non-

trivial smooth function and no finite magnetization de-

velops for 𝑇 ≤ 𝑇c.
[15,55] These results suggest a threshold

value 𝜎* = 2 in the LR XY model, below which the system

develops a LR order parameter and becomes a ferromag-

net.

The spontaneous 𝑂(2) symmetry breaking for 𝜎 ≤ 2

naturally implies the existence of Goldstone mode in the

low-𝑇 phase. Consider the field-theoretical Hamiltonian of

2D LR 𝑂(𝒩 ) models in momentum-space,

𝛽𝐻 =

∫︁
d2𝑞

(2𝜋)2

(︂
𝐾2

2
𝑞2 +𝐾𝜎𝑞

𝜎

)︂
𝛹(𝑞) · 𝛹(−𝑞)

+

∫︁
d2𝑥

(︂
𝑡

2
𝛹2 + 𝑢𝛹4

)︂
, (1)

where 𝛹 is the 𝒩 -component order parameter field, 𝑡 is

the distance to criticality, and 𝐾2, 𝐾𝜎, 𝑢 are coupling

constants. In the low-𝑇 phase (𝑡 < 0), when a LRO

exists, the system is far from criticality, and renormal-

ization becomes trivial; thus, for 𝜎 < 2, 𝐾𝜎𝑞
𝜎 becomes

the leading term, and 𝐾2
2
𝑞2 can be ignored. Employ-

ing the saddle point approximation, 𝛹 can then be writ-

ten in terms of longitudinal and transverse (Goldstone-

mode) fluctuations 𝛹(𝑥) = 𝛹L(𝑥) + 𝛹T(𝑥). In this ex-

pansion, the two-point correlation of transverse fluctua-

tion in momentum space ⟨𝛹T(𝑞)𝛹T(−𝑞)⟩ is proportional

to |𝑞|−𝜎, which results in a power-law correlation in real-

space ⟨𝛹T(0)𝛹T(𝑥)⟩ ∼ |𝑥|−2+𝜎. Therefore, for the LR XY

model, one has 𝑔(𝑥) = 𝑔0 + 𝑐𝑥−𝜂ℓ , where 𝜂ℓ = 2 − 𝜎 and

𝑐 is a constant. Accordingly, one can derive in the LRO

phase for 𝜎 < 2, 𝑀2 ∼ 𝑀2
0 + 𝑏𝐿−𝜂ℓ , 𝜒𝑘 ∼ 𝐿2−𝜂ℓ and

𝜉 ∼ 𝐿1+𝜂ℓ/2. In the marginal case of 𝜎 = 2, however,

the exact scaling form of 𝑔(𝑥) is not straightforward to

Table 1. Critical point 𝛽c and critical exponents of LR

XY model for various 𝜎 in the non-classical regime. Here,

𝜈 is the correlation length exponent, and 𝜂 is the magnetic

anomalous dimension. In the low-𝑇 phase, 𝜂ℓ is consistent

with theoretical prediction, 𝜂ℓ = 2− 𝜎.

𝜎 𝛽c 1/𝜈 𝜂 𝜂ℓ

1.250 0.599615(6) 0.987(4) 0.75(1) 0.751(2)

1.750 0.68380(7) 0.60(4) 0.324(7) 0.250(2)

1.875 0.70737(7) 0.48(4) 0.278(5) 0.122(5)

2.000 0.7315(2) 0.37(4) 0.260(5) 0 (1/ ln𝐿)
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derive. Nevertheless, it is natural to expect logarithmic

corrections as the anomalous dimension 𝜂ℓ vanishes and

the LR and SR terms become degenerate. [56,57] Hence,

we conjecture that, at 𝜎 = 2, 𝑀2 ∼ 𝑀2
0 + ln(𝐿/𝐿0)

𝜂ℓ ,

𝜒𝑘 ∼ 𝐿2 ln(𝐿/𝐿′
0)

𝜂ℓ and 𝜉 ∼ 𝐿 ln(𝐿/𝐿′′
0 )

−𝜂ℓ/2. Here, 𝜂ℓ is

the exponent of the logarithmic correction, and 𝐿0, 𝐿
′
0, 𝐿

′′
0

are non-universal constants.

The upper-left insets of Fig. 2, showing (𝜉/𝐿)2 as a

function of ln𝐿, demonstrate distinctive low-𝑇 scaling be-

haviors of 𝜉/𝐿 for different 𝜎 values. For 𝜎 = 2, the data

points can be well-described by straight lines of ln𝐿, which

confirms the conjectured logarithmic scaling behavior and

indicates 𝜂ℓ = −1, i.e., (𝜉/𝐿)2 ∼ ln𝐿. For 𝜎 = 1.75, the

bending-up curvatures mean that divergences of 𝜉/𝐿 are

faster than the logarithmic growth. The least-squares fit

by (𝜉/𝐿)2 = 𝑐 + 𝐿𝜂ℓ(𝑎 + 𝑏𝐿−1), with constants 𝑎, 𝑏, and

𝑐, gives 𝜂ℓ = 0.250(4) for various 𝑇 values, well consis-

tent with the theoretical prediction. Fitted values of 𝜂ℓ

are given in Table 1. By contrast, for 𝜎 = 3, 𝜉/𝐿 quickly

converges to a constant with increasing 𝐿.

Direct evidence of LRO for 𝜎 ≤ 2 and 𝑇 < 𝑇c is

presented in the bottom-right insets of Fig. 2 by showing

the low-𝑇 scaling behavior of the residual magnetization

𝑀2
r . FSS analysis of 𝑀2 suffers from strong finite-size

corrections from Goldstone-mode fluctuations; such cor-

rections can be reduced by defining a residual magnetiza-

tion 𝑀2
r = 𝑀2 − 𝑏𝑀2

𝑘 , where 𝑏 > 0 is some constant. [44]

By definition, 𝑀2
𝑘 is a lower bound of 𝑀2, i.e., 𝑀2

𝑘 ≤ 𝑀2,

and the extrapolation of 𝑀2
r in the thermodynamic limit

converges faster than that of 𝑀2. For 𝜎 = 1.75 and 2, 𝑀2
r

versus 𝐿−𝜔, with 𝜔 = 0.65 and 0.4 respectively, clearly

extrapolates to positive values, illustrating an LRO phase.

Here, 𝑏 = 22 for all 𝛽 for 𝜎 = 1.75 and 𝑏 = 149, 175,

152, and 154 for 𝛽 = 1, 2, 4, and 8 in 𝜎 = 2. It is fur-

ther noted that the correction amplitude of 𝐿−𝜔 in 𝑀2
r is

negative, and the value of 𝑀2
r is already positive for finite

𝐿s, strongly indicating that in the 𝐿 → ∞ limit 𝑀2
r > 0

and consequently 𝑀2 > 0. Our results provide compelling

evidence that as long as 𝜎 ≤ 2, the LR XY model enters a

ferromagnetic phase and thus, the phase transition should

be of the second order. Note that our findings differ from

those of Refs. [11,12].

We now turn to the high-𝑇 properties at 𝜎 = 2, specif-

ically the growth of the second-moment correlation length

𝜉 as 𝑇 approaches 𝑇c from above. [53] In the context of RG,

near a BKT fixed point, 𝜉 exhibits an exponential diver-

gence, 𝜉 ∼ exp
(︀
𝑏/
√
𝑡
)︀
, where 𝑡 is the reduced temperature

𝑡 = (𝑇 −𝑇c)/𝑇c and 𝑏 is a non-universal constant. [36] Con-

versely, 𝜉 diverges algebraically, 𝜉 ∼ 𝑡−𝜈 , near a second-

order transition. We first determine the critical points

𝑇c(𝜎 = 2) = 1.3671(4) and 𝑇c(𝜎 = 3) = 1.109(2), then plot

𝜉 of various 𝐿 against 𝑏/
√
𝑡 on a semi-log scale for 𝜎 = 2, 3,

and the NN case (Fig. 3). Note that for given 𝑡s, 𝜉 quickly

converges to its thermodynamic value as 𝐿 increases, ex-

cept when 𝑡 → 0 and the system enters the finite-size criti-

cal window, where 𝜉 ∼ 𝐿 and the curve bends to a plateau.

For 𝜎 = 3 and the NN case, the thermodynamic values of

𝜉 collapse onto a single linear trajectory, consistent with

the BKT behavior. For 𝜎 = 2, however, as 𝑡 decreases, the

growth behavior of 𝜉 increasingly deviates from the BKT

curves, suggesting a different universality class. Further-

more, the log-log plot in the inset shows that for 𝜎 = 2,

𝜉 asymptotically follows an algebraic scaling (visually ap-

proximated by 𝑡−2.22). The deviation from the FSS fitting

result is due to strong finite-size corrections at 𝜎 = 2; the

exponent of the power-law growth should asymptotically

converge to 𝜈 = 2.7(3) as the system size further increases

and 𝑡 decreases. Nevertheless, these results strongly sug-

gest that instead of being BKT-type, the phase transition

at 𝜎 = 2 is a second-order transition.
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Fig. 3. Deviation of correlation length growth at 𝜎 = 2 from

the BKT scaling. The main panel shows a semi-logarithmic

plot of 𝜉 as a function of 𝑏/
√
𝑡 for various 𝐿 at 𝜎 = 2 (blue

dots), 3 (red dots), and NN XY case (black dots), where 𝑡 is

the reduced temperature, and 𝑏 = 1, 1.25, and 1.625 respec-

tively. For the 𝜎 = 3 and NN XY case, the linear behavior

of 𝜉 demonstrates an exponential growth of 𝜉, characterizing

the BKT transition. However, for 𝜎 = 2, the growth of 𝜉 de-

viates more and more from the BKT behavior as the system

approaches the critical point. The inset shows a double-log

plot of 𝜉 versus 1/𝑡 for 𝜎 = 2, revealing a power-law behavior

of 𝜉, thus highlighting the second-order phase transition.
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Fig. 4. Low-𝑇 transitions at 𝜎 = 2 with 𝑇 = 1. (a)

𝜉/𝐿 versus 𝜎 for various 𝐿. The system enters the LRO

phase when 𝜎 ≤ 2. The inset shows good data collapse

of 𝜉/(𝐿 ln(𝐿/𝐿0)1/2) versus 𝜎̃ ln(𝐿/𝐿1), where 𝜎̃ = 𝜎 − 2,

𝐿0 = 2.9 and 𝐿1 = 3. (b) 𝜒𝑘𝐿
−2 ln(𝐿/𝐿′

0) versus 𝜎 for var-

ious 𝐿, with 𝐿′
0 = 2.9. The scaled 𝜒𝑘 curves have a clear

crossing point at 𝜎 = 2 as demonstrated in both panel (b)

and its inset.
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Previous analysis demonstrates logarithmic behaviors

of 𝜉/𝐿 and 𝜒𝑘 in the low-𝑇 phase at 𝜎 = 2. Here, we fix the

temperature at 𝑇 = 1.0, which is below the critical point

𝑇c(𝜎 = 2) = 1.3671(4) but sufficiently high, and study the

behaviors of 𝜉 and 𝜒𝑘 as a function of 𝜎. Figure 4(a) shows

three phases as 𝜎 decreases. The system first enters the

QLRO phase from the disordered phase via a BKT tran-

sition at 𝜎 ≈ 4.0; as 𝜎 further declines, 𝜉/𝐿 curves begin

diverging near 𝜎 = 2, indicating the transition into LRO

phases. We also plot 𝜒𝑘𝐿
−2 ln(𝐿/𝐿′

0) as a function of 𝜎

for various 𝐿 in Fig. 4(b), with a constant 𝐿′
0 = 2.9. These

curves exhibit an intersection at 𝜎 = 2, consistent with

theoretical predictions. A zoomed-in plot in the inset bet-

ter displays this crossing. Moreover, considering the loga-

rithmic corrections at 𝜎 = 2 and 𝑇 < 𝑇c, we conjecture the

scaling of 𝜉 near 𝜎 = 2 as 𝜉 = 𝐿 ln(𝐿/𝐿0)
1
2 𝜉′[𝜎̃ ln (𝐿/𝐿1)],

where 𝜎̃ = 𝜎−2, 𝜉′[·] is a universal scaling function, and 𝐿0

and 𝐿1 are non-universal constants. As shown in the in-

set, the scaled 𝜉 data points collapse onto the same curve,

further supporting the 𝜎* = 2 scenario. It is notewor-

thy that, in the thermodynamic limit, the magnetization

density is finite in the LRO phase while vanishing in the

QLRO phase, which should manifest a first-order-like dis-

continuity at 𝜎 = 2.

4. Conclusion and Outlook. Our study reveals that, for

𝜎 ≤ 2, the 2D LR XY model enters a ferromagnetic phase

at low-𝑇 through a second-order transition, indicating the

threshold value at 𝜎* = 2. We show that the system ex-

hibits finite magnetization density and Goldstone mode

fluctuation in the low-𝑇 phase. The power-law growth

of 𝜉 near the critical point further demonstrates that the

phase transition at 𝜎 = 2 is the second-order, excluding

the scenario predicted in Ref. [11]. Finally, for 𝜎 = 2 and

𝑇 < 𝑇c, the observed multiplicative logarithmic behavior

requires further theoretical investigation.

Preliminary investigations for the 2D LR Heisenberg

model illustrate that the algebraic interaction would in-

duce a LR ordered ferromagnet as long as 𝜎 ≤ 2; while

the system exhibits no finite-𝑇 transition for 𝜎 > 2. On-

going studies are being conducted for a systematic revisit

of the LR O(𝒩 ) spin models, including the Ising model

that has been extensively studied in literatures. The suc-

cess of this work also suggests that, instead of simply im-

proving over the estimate of critical exponents, one can

study the system in an extended parameter space, e.g.,

the geometric structures of the Ising model and the self-

avoiding random walk, which corresponds to the 𝒩 → 0

limit of the O(𝒩 ) spin model. [58] In addition, the topol-

ogy of our phase diagram differs from that of the LR

quantum XXZ chain, [12,59] which implies that the direct

mapping [60] might be invalid here, posing an open ques-

tion about the correspondence between LR classical and

LR quantum models. Finally, we emphasize that our work

may be of timely application in cutting-edge experiments,

such as trapped ions and Rydberg-atom arrays, that in-

volve LR interactions.
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