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The crossover between short-range and long-range (LR) universal behaviors remains a central theme in the
physics of LR interacting systems. The competition between LR coupling and the Berezinskii—Kosterlitz—Thouless
mechanism makes the problem more subtle and less understood in the two-dimensional (2D) XY model, a corner-
stone for investigating low-dimensional phenomena and their implications in quantum computation. We study

the 2D XY model with algebraically decaying interaction ~1/r

2+ Utilizing an advanced update strategy, we

conduct LR Monte Carlo simulations of the model up to a linear size of L = 8192. Our results demonstrate

continuous phase transitions into a ferromagnetic phase for o < 2, which exhibit the simultaneous emergence of
a long-ranged order and a power-law decaying correlation function due to the Goldstone mode. Furthermore,

we find logarithmic scaling behaviors in the low-temperature phase at ¢ = 2. The observed scaling behaviors in

the low-temperature phase for o < 2 agree with our theoretical analysis. Our findings request further theoretical

understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.

DOLI: 10.1088/0256-307X/42/7/070002
1. Introduction. Long-range (LR) interacting sys-
tems have been studied in statistical and condensed mat-
ter physics for decades, unveiling a range of exotic phys-
ical phenomena.™® This interest has recently intensi-
fied, driven by the experimental realizations of such sys-
tems in atomic, molecular, and optical (AMO) setups. [4-10]
In particular, the two-dimensional (2D) XY model with
LR interactions has gained notable attention.** 4 With-
out LR interactions, the model undergoes the cele-
brated Berezinskii—Kosterlitz—Thouless (BKT) transition

[15]

driven by topological defects and serves as a fun-

damental cornerstone for understanding low-dimensional

16 and superconductivity. (17-19] Upon incor-

superfluidity
porating LR interactions, however, it becomes a pivotal
framework for exploring the complex interplay between
LR interactions and the BKT mechanism. "®! Most impor-
tantly, recent implementations of the model in trapped ion
setups and Rydberg systems demonstrate its significance
in quantum computation. [10,13,14]

The XY model belongs to the classical O(N) spin
models with /' = 2. The d-dimensional LR O(N)
spin model with power-law decaying ~ 1/r**° interac-
tions has been extensively investigated, particularly re-
garding the renormalization group (RG) relevance of the

[20-27]

LR interactions. In such systems, a threshold o sep-
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arates the LR and short-range (SR) critical behaviors. For
0 > 0+, the system is in the same universality class as its
nearest-neighbor (NN) counterpart, while for o < o, the
LR interactions become relevant, yielding distinct critical
properties. [21-23] The value of o, was first obtained in the
seminal paper of Fisher et al., (1] where a second-order e-
expansion approach suggests o, = 2. Later, a new thresh-
old o« = 2—nsr was proposed by Sak, (22] currently known
as Sak’s criterion, where nsg is the anomalous dimension
in the SR limit.
ingly support Sak’s criterion,

While several numerical studies seem-

24,28,2 . P
[24:28,29] Gther investigations

and theoretical analyses favor the o. = 2 scenario. [30-32]
The problem becomes more subtle for the 2D XY
model. In the SR limit, the Mermin—Wagner theorem for-
bids the formation of a long-range order (LRO) phase. **]
Yet, the model undergoes a BKT transition, entering a
quasi-long-range order (QLRO) phase. (151 Applying Sak’s
criterion to the 2D XY model can be especially nuanced
because, rather than a single fixed point, the SR critical
behavior is governed by an entire line of fixed points with
a temperature-dependent anomalous dimension 7(7"), and

e. 1112151 Conven-

the phase transition is of topological typ
tional strategies for analyzing the XY model, such as map-
ping it to Coulomb gas or the sine-Gordon model, **:3%

might fail in the presence of LR interaction.*') Further-
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more, the numerical study of this model faces consider-
able difficulties, including logarithmic corrections owing

15,36]

to BKT universality, ! severe finite-size effects, and

the escalating computational costs associated with LR
interactions. 73]

Recent field-theoretical studies of the 2D LR XY model
predict an exotic phase diagram.**?l An intermediate
QLRO phase is stabilized for 1.75 < o < 2, below
which the system enters an LRO phase. Intriguingly, a
similar study on the LR Villain model reveals different
behavior, [39] despite both models belonging to the same

(4041 This deviation

universality class in the SR limit.
is particularly notable given that such an intermediate
QLRO phase is absent in previous numerical results of the
LR diluted XY model in 2D, (2] 4 model expected to share
the same critical behaviors as the 2D LR XY model. 4243

In this Letter, we study the 2D LR XY model with

4+9 interactions by large-scale

power-law decaying ~1/r
simulations up to a linear size of L = 8192. The phase
diagram of the model, as depicted in Fig. 1, is character-
ized by three distinct regimes: the classical (o < 1), the
non-classical (1 < o < 2), and the SR regime (o > 2). As
expected, for o < 1, the critical behaviors are governed by
(23] while for o > 2, the sys-

tem exhibits BKT transitions. The non-classical regime

Gaussian mean-field theory,

(1 < o < 2) is of particular interest. The finite-size scaling
(FSS) behaviors in this regime demonstrate that the sys-
tem undergoes a second-order transition (Fig.2). Rather
than focusing on refining the estimates of the o-dependent
critical exponents, we investigate the low-7" and high-T
properties of the model. In the low-T phase for o < 2,
we show that the LR ferromagnetic order emerges, i.e.,
magnetization density M > 0. The two-point correlation
function decays as a power law g(z) ~ go +cx~ "™ and sat-
urates to a constant go = M?, as distance @ — oo. Here,
the magnetic anomalous exponent 7 = 2 — o can be the-
oretically derived from the Goldstone-mode (transverse)

fluctuations of the order parameter. For the marginal case
o = 2 (g, = 0), logarithmic scaling behaviors are clearly
observed, though a theoretical derivation is still lacking. In
the high-T" paramagnetic phase, the growth behavior of the
correlation length £ is carefully examined as temperature T’
decreases and approaches the critical point T¢.. For o > 2,
¢ grows exponentially as ~e*V? with t = (T — T..) /T be-
ing the reduced temperature. The data of £ at different o
collapse on top of each other, clearly illustrating the BKT
physics. However, for ¢ < 2, the growth of £ deviates
more and more from the BKT curve as L increases, and a
power-law behavior is asymptotically observed, clearly in-
dicating a second-order phase transition. Strong evidence
for 0. = 2 is also found by studying the low-T" transition
from the QLRO phase to the LRO ferromagnet as o crosses
o = 2. Finally, we determine with high precision the criti-
cal points and critical exponents in the non-classical regime
1 < 0 < 2. More technical details and extensive analysis
are presented in Ref. [44].
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Fig. 1. Phase diagram of the LR XY model in 2D. The SR
regime (o > 2) exhibits BKT transitions (brown line) into
the QLRO phase. In the non-classical regime (1 < o < 2),
the system undergoes a second-order transition (red line)
into an LRO phase. Finally, in the classical regime (o < 1),
the transition (purple lines) is described by the Gaussian
theory. Symbol T.CC stands for the critical temperatures for
the complete-graph case and TCNN for the nearest-neighbor
(NN) case.
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Fig. 2. Emergence of the LRO for o < 2. As temperature T' decreases, the correlation-length ratio £/L for (a)
o = 1.75 and (b) o = 2 displays typical scaling behaviors for a system entering into a LR ordered phase via a
continuous phase transition at Tc: it has an asymptotically universal value at 7' = T, and diverges for T' < T¢ as
L increases. In contrast, for (¢) o = 3, which has a BKT transition, £/L for different L quickly converges to a
smooth function for T' < T, as a consequence of the algebraically decaying QLRO. The top left insets illustrate the
divergence of (£/L)? in the low-T phase for o = 1.75 and 2 compared to the quick convergence for the o = 3 case.
We find a power-law divergence (£/L)? ~ L with a T-independent exponent 1, for ¢ = 1.75 and a logarithmic
divergence ~In L for the marginal case o = 2 (see the text for details). Moreover, the bottom right insets for
o = 1.75 and 2 plot the residual magnetization density M2 against L™, with w = 0.65 and 0.4, respectively. The
extrapolation of M2 converges to positive values in the L — oo limit, providing direct evidence for the ferromagnetic
order in the low-T" phase. In contrast, for 0 = 3, M? exhibits an algebraic decay characteristic of a QLRO phase.
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2. Model, Algorithm and Observables. We consider the
LR interacting XY model on a square lattice of side length
L, described by the Hamiltonian H = — ZKJ. J/ridj"si .
S;, where S; and S; are 2-component unit spin vectors
at sites ¢ and j, respectively, and 7;; denotes the dis-
tance between these sites. The summation encompasses all
unique pairs of spins. With periodic boundary conditions,
each spin interacts with the other N — 1 spins (N = L?)
via the shortest distance. In addition, the interaction
strength J is normalized such that >, J/rg;" =4, to
satisfy the strict extensibility of the total energy and thus
to reduce unnecessary finite-size corrections. ?%**46 The
Boltzmann weight of a configuration is exp(—8H), with
B =1/kgT the inverse temperature (kg = 1 is set).

Substantial computational expense is the primary fac-
tor hindering large-scale simulations of the model. In con-
ventional Monte Carlo methods, it scales as O(NN) per spin
update due to LR interactions. Specialized techniques
have been developed to efficiently simulate LR interact-
ing systems. [29,37,38,46] e employ an enhanced version of
the Luijten-Blote algorithm, [37,46]
spin updates 474! alongside an exceedingly efficient clus-
ter construction procedure (see Ref. [44] for details). This

which utilizes cluster

technique significantly accelerates the construction of clus-
ters, rendering the computational time per spin indepen-
dent of N. Specifically, we incorporate the clock sampling

[38] o efficiently sample bond activation events,

technique
substantially improving computational speed and memory
usage. It also eliminates the need for a look-up table and
alleviates truncation errors stemming from discrete cumu-
lative probability integration approximations. [46]

Various physical quantities are measured.
given configuration, we compute the magnetization den-
sity M = L2 |Zl Si’, and its Fourier transform M, =
L™?|32, Sie™"i|. Here, r; denotes the coordinates of site
¢ and k = (2w/L,0) is the smallest wave vector along the
After thermalization, we obtain the susceptibil-

For a

z-axis.
ity x = L*(M?), the Fourier-transformed susceptibility
xr = L?(M?), where (-) represents the statistical average.
We also measure the second-moment correlation length
&ana = 1/ [2sin(|k|/2)] \/(M?)/(M?) — 1. In the disor-
dered phase, it is asymptotically equivalent to the conven-
tional exponential correlation length £exp in the thermody-
namic limit, but is much easier to compute as it requires no
fitting. At criticality and in the ordered phase, however,
their behaviors differ. At the critical point, &exp is ill-
defined due to the algebraically decaying correlation func-
tions, while €214 scales proportionally to the system size L,
and the ratio &ana/L converges to a universal value. Simi-
larly, in the QLRO phase, &ana/L converges to a universal
function of 8. In the ordered phase, &2na diverges due to
finite (M?) and vanishing (M?) in the L — oo limit. For
the ordered phase without Goldstone mode, &2n4q typically
scales as ~L't%/2 while €exp remains finite. In contrast,
in systems with Goldstone modes, &oxp is again ill-defined,
and &ana scales as ~LIT @A) /2 Overall, €214 serves as a
robust and informative indicator of different phases. [49-53]
For brevity, we refer to &2,q4 as  throughout this paper.

We use the standard binning and jackknife methods to
estimate the error bars.

8. Results.
Binder cumulant®¥ and the second-moment correlation

Dimensionless quantities, such as the

length ratio S/L,[49 52 are powerful tools for studying
phase transitions. Figure2 shows that for o < 2, the £/L
curves display the typical FSS behaviors of a second-order
transition, i.e., /L curves of different L share a univer-
sal intersection point at T = T, and diverge for T' < T¢
[49-52] e perform least-squares fits using
the standard FSS technique to accurately estimate the

as L increases.

critical points and critical exponents in the non-classical
regime 1 < o < 2, as presented in Table 1. As a ref-
erence, characteristic FSS behavior of BKT transitions is
observed for ¢ = 3, where £/L curves converge to a non-
trivial smooth function and no finite magnetization de-
velops for T' < Te. [15:55] These results suggest a threshold
value o, = 2 in the LR XY model, below which the system
develops a LR order parameter and becomes a ferromag-
net.

The spontaneous O(2) symmetry breaking for o < 2
naturally implies the existence of Goldstone mode in the
low-T phase. Consider the field-theoretical Hamiltonian of

2D LR O(N) models in momentum-space,
d’q (K -
BH = / (2;;2 (fcf + Koq )W(Q) ¥(-q)

+ [ @ (Lo? purt) (1)
fe= (5 )

where ¥ is the N -component order parameter field, ¢ is
the distance to criticality, and K2, K,, u are coupling
In the low-T phase (¢ < 0), when a LRO
exists, the system is far from criticality, and renormal-

constants.

ization becomes trivial; thus, for ¢ < 2, K,q° becomes
the leading term, and %qQ can be ignored. Employ-
ing the saddle point approximation, ¥ can then be writ-
ten in terms of longitudinal and transverse (Goldstone-
mode) fluctuations ¥(x) = ¥(x) + ¥r(x).
pansion, the two-point correlation of transverse fluctua-
tion in momentum space (¥r(q)¥r(—q)) is proportional

In this ex-

to |g|~7, which results in a power-law correlation in real-
space (U (0)r(x)) ~ |2|~2T7. Therefore, for the LR XY
model, one has g(z) = go + cx~", where 7 = 2 — o and
c is a constant. Accordingly, one can derive in the LRO
phase for o < 2, M? ~ MZ& +bL™", xp ~ L*7™ and
& ~ L'*/2 In the marginal case of ¢ = 2, however,
the exact scaling form of g(x) is not straightforward to

Table 1. Critical point B. and critical exponents of LR
XY model for various ¢ in the non-classical regime. Here,
v is the correlation length exponent, and 7 is the magnetic
anomalous dimension. In the low-T phase, 7, is consistent
with theoretical prediction, n, =2 — o.

o B 1/v n e
1.250  0.599615(6)  0.987(4)  0.75(1) 0.751(2)
1.750  0.68380(7) 0.60(4)  0.324(7) 0.250(2)
1.875  0.70737(7) 0.48(4)  0.278(5) 0.122(5)
2.000 0.7315(2) 0.37(4)  0.260(5) 0 (1/InL)
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derive. Nevertheless, it is natural to expect logarithmic
corrections as the anomalous dimension 7, vanishes and
the LR and SR terms become degenerate.*>°" Hence,
we conjecture that, at ¢ = 2, M? ~ Mg + ln(L/Lo)ﬁ@,
Xk ~ L?In(L/LY)" and € ~ Lin(L/Ly)~"/?. Here, i is
the exponent of the logarithmic correction, and Lo, L{, L{
are non-universal constants.

The upper-left insets of Fig.2, showing (£/L)? as a
function of In L, demonstrate distinctive low-T" scaling be-
haviors of £/L for different o values. For o = 2, the data
points can be well-described by straight lines of In L, which
confirms the conjectured logarithmic scaling behavior and
indicates iy = —1, i.e., (¢/L)? ~ InL. For ¢ = 1.75, the
bending-up curvatures mean that divergences of £/L are
faster than the logarithmic growth. The least-squares fit
by (§/L)> = ¢+ L"(a + bL™"), with constants a, b, and
¢, gives n¢ = 0.250(4) for various T values, well consis-
tent with the theoretical prediction. Fitted values of 7,
are given in Table 1. By contrast, for ¢ = 3, £/L quickly
converges to a constant with increasing L.

Direct evidence of LRO for ¢ < 2 and T < T. is
presented in the bottom-right insets of Fig.2 by showing
the low-T' scaling behavior of the residual magnetization
M?2. FSS analysis of M? suffers from strong finite-size
corrections from Goldstone-mode fluctuations; such cor-
rections can be reduced by defining a residual magnetiza-
tion M2 = M? — bM}, where b > 0 is some constant. [44]
By definition, M? is a lower bound of M2, i.e., M? < M?,
and the extrapolation of M2 in the thermodynamic limit
converges faster than that of M?. For ¢ = 1.75 and 2, M2
versus L™®, with w = 0.65 and 0.4 respectively, clearly
extrapolates to positive values, illustrating an LRO phase.
Here, b = 22 for all 8 for 0 = 1.75 and b = 149, 175,
152, and 154 for B =1, 2, 4, and 8 in ¢ = 2. It is fur-
ther noted that the correction amplitude of L™ in M2 is
negative, and the value of M2 is already positive for finite
Ls, strongly indicating that in the L — oo limit M2 > 0
and consequently M? > 0. Our results provide compelling
evidence that as long as o < 2, the LR XY model enters a
ferromagnetic phase and thus, the phase transition should
be of the second order. Note that our findings differ from
those of Refs. [11,12].

We now turn to the high-T properties at o = 2, specif-
ically the growth of the second-moment correlation length
¢ as T approaches T, from above. ** In the context of RG,
near a BKT fixed point, £ exhibits an exponential diver-
gence, £ ~ exp (b/\/f), where t is the reduced temperature
t = (T —T.)/T. and b is a non-universal constant. *°! Con-
versely, £ diverges algebraically, £ ~ t™", near a second-
order transition. We first determine the critical points
Te(o =2) =1.3671(4) and Tc (o = 3) = 1.109(2), then plot
¢ of various L against b/+/t on a semi-log scale for o = 2, 3,
and the NN case (Fig. 3). Note that for given ts, £ quickly
converges to its thermodynamic value as L increases, ex-
cept when t — 0 and the system enters the finite-size criti-
cal window, where £ ~ L and the curve bends to a plateau.
For 0 = 3 and the NN case, the thermodynamic values of
& collapse onto a single linear trajectory, consistent with

the BKT behavior. For o = 2, however, as t decreases, the
growth behavior of £ increasingly deviates from the BKT
curves, suggesting a different universality class. Further-
more, the log-log plot in the inset shows that for o = 2,
¢ asymptotically follows an algebraic scaling (visually ap-
proximated by t~2??). The deviation from the FSS fitting
result is due to strong finite-size corrections at o = 2; the
exponent of the power-law growth should asymptotically
converge to v = 2.7(3) as the system size further increases
and t decreases. Nevertheless, these results strongly sug-
gest that instead of being BKT-type, the phase transition
at 0 = 2 is a second-order transition.

Fig. 3. Deviation of correlation length growth at o = 2 from
the BKT scaling. The main panel shows a semi-logarithmic
plot of ¢ as a function of b/+/t for various L at o = 2 (blue
dots), 3 (red dots), and NN XY case (black dots), where ¢t is
the reduced temperature, and b = 1, 1.25, and 1.625 respec-
tively. For the o = 3 and NN XY case, the linear behavior
of £ demonstrates an exponential growth of £, characterizing
the BKT transition. However, for o = 2, the growth of £ de-
viates more and more from the BKT behavior as the system
approaches the critical point. The inset shows a double-log
plot of € versus 1/t for o = 2, revealing a power-law behavior
of &, thus highlighting the second-order phase transition.

15(a) ¢/L 64 oF

E & /(L*In(L/ L))
- 128 o vs. GIn(L/Ly)
e 256 .
10 - e+ 512 1t -
1024 g,
\ a4 2048 W w
5L F 4096 0

0.04

0.02 |

o

Fig. 4. Low-T transitions at ¢ = 2 with T = 1. (a)
&/L versus o for various L. The system enters the LRO
phase when o < 2. The inset shows good data collapse
of €/(LIn(L/Lo)/?) versus &1In(L/L1), where § = o — 2,
Lo=29and L1 = 3. (b) xxL~2In(L/L}) versus o for var-
ious L, with Ly = 2.9. The scaled xj curves have a clear
crossing point at ¢ = 2 as demonstrated in both panel (b)
and its inset.
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Previous analysis demonstrates logarithmic behaviors
of /L and xy in the low-T phase at o = 2. Here, we fix the
temperature at 7" = 1.0, which is below the critical point
Tc(o = 2) = 1.3671(4) but sufficiently high, and study the
behaviors of £ and xy as a function of o. Figure4(a) shows
three phases as o decreases. The system first enters the
QLRO phase from the disordered phase via a BKT tran-
sition at o ~ 4.0; as o further declines, {/L curves begin
diverging near o = 2, indicating the transition into LRO
phases. We also plot xx L 2In(L/Ly) as a function of o
for various L in Fig. 4(b), with a constant Ly = 2.9. These
curves exhibit an intersection at ¢ = 2, consistent with
theoretical predictions. A zoomed-in plot in the inset bet-
ter displays this crossing. Moreover, considering the loga-
rithmic corrections at 0 = 2 and T' < Tt, we conjecture the
scaling of & near 0 = 2 as £ = LIn(L/Lo)2¢'[51n (L/L1)],
where & = 0—2, £'[-] is a universal scaling function, and Lo
and L are non-universal constants. As shown in the in-
set, the scaled ¢ data points collapse onto the same curve,
further supporting the o. = 2 scenario.
thy that, in the thermodynamic limit, the magnetization
density is finite in the LRO phase while vanishing in the
QLRO phase, which should manifest a first-order-like dis-
continuity at o = 2.

4. Conclusion and Outlook. Our study reveals that, for
o < 2, the 2D LR XY model enters a ferromagnetic phase
at low-T" through a second-order transition, indicating the
threshold value at 0. = 2. We show that the system ex-
hibits finite magnetization density and Goldstone mode
fluctuation in the low-T" phase.
of ¢ near the critical point further demonstrates that the

It is notewor-

The power-law growth

phase transition at ¢ = 2 is the second-order, excluding
the scenario predicted in Ref. [11]. Finally, for ¢ = 2 and
T < Tt, the observed multiplicative logarithmic behavior
requires further theoretical investigation.

Preliminary investigations for the 2D LR Heisenberg
model illustrate that the algebraic interaction would in-
duce a LR ordered ferromagnet as long as o < 2; while
the system exhibits no finite-T" transition for ¢ > 2. On-
going studies are being conducted for a systematic revisit
of the LR O(N) spin models, including the Ising model
that has been extensively studied in literatures. The suc-
cess of this work also suggests that, instead of simply im-
proving over the estimate of critical exponents, one can
study the system in an extended parameter space, e.g.,
the geometric structures of the Ising model and the self-
avoiding random walk, which corresponds to the ' — 0
limit of the O(N) spin model.®® In addition, the topol-
ogy of our phase diagram differs from that of the LR
quantum XXZ chain, (12591 which implies that the direct
mapping (60] might be invalid here, posing an open ques-
tion about the correspondence between LR classical and
LR quantum models. Finally, we emphasize that our work
may be of timely application in cutting-edge experiments,
such as trapped ions and Rydberg-atom arrays, that in-
volve LR interactions.
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