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The two-dimensional (2D) XY model plays a crucial role in statistical and condensed-matter physics. With
the introduction of long-range interactions, the system exhibits a richer set of physical phenomena and a
crossover between nonclassical and short-range universality classes. In this work, we investigate the 2D XY
model with algebraically decaying interactions ~1/r>*° and provide a comprehensive numerical analysis of its
thermodynamic properties. We demonstrate that for o < 2, the system undergoes a second-order phase transition
into a ferromagnetic phase characterized by the emergence of long-range order. In the low-temperature phase,
due to the presence of the Goldstone mode, the correlation function saturates to a nonzero constant in the form
of a power law for o < 2, with decaying exponent 2 — ¢, and in the form of the inverse logarithm of distance for
o = 2. Moreover, the critical points and exponents are also determined for various o. We provide compelling
evidence that the crossover between nonclassical and short-range regimes occurs at ¢ = 2. This work presents a
detailed account of the simulation methodology, extensive numerical data, and new insights into the physics of

long-range interacting systems.
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I. INTRODUCTION

Long-range (LR) interactions are prevalent in various nat-
ural phenomena, such as gravitational interactions between
celestial bodies and electromagnetic interactions between par-
ticles. A key characteristic of these interactions is that their
strength decays with distance according to a power law. In-
troducing LR interactions into complex many-body systems
can significantly influence their phase-transition properties,
leading to a richer array of physical phenomena. The first
study of LR interactions dates back to 1969, when Dyson in-
vestigated their effects in a one-dimensional (1D) Ising chain
by introducing the interaction term J;; = |i — j|~(+) [1].
Dyson’s work revealed that, unlike the original Ising model,
which exhibited no phase transitions, the LR interactions in-
duce a second-order phase transition at finite temperatures
for 0 < o < 1. This finding highlights the profound impact
of LR interactions on phase transitions, demonstrating that
they can give rise to novel and intriguing physical behaviors
in many-body systems.

Building upon this foundational work, the Ising model
can be extended to the general O(n) spin model with LR

interactions, where the interaction decays as ri;(d+a). In this
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context, r;; represents the distance between sites i and j, and
d is the spatial dimension. This extension provides a broader
framework for understanding the effects of LR interactions in
various many-body systems.

The LR O(n) spin model was first thoroughly studied by
Fisher using a renormalization-group (RG) approach [2]. He
categorized the system’s behavior into three regimes based
on the parameter o: (1) 0 < 0 < d/2 (classical regime): in
this regime, the critical behavior of the system is governed
by the Gaussian fixed point; (2) d/2 < o < 2 (nonclassical
regime): Gaussian fixed points cease to be stable, and the criti-
cal exponents vary with o, with the critical exponent 7, posited
to precisely retain its value within the mean-field regime,
namely, n =2 — o; (3) 0 > 2 [short-range (SR) regime]: in
this interval, LR terms in the Hamiltonian become irrelevant,
leading to the recovery of SR behavior. Regimes (1) and
(3) have gained widespread acceptance, whereas regime (2)
presents some issues. According to the regime (2), the expo-
nent 1 might exhibit a sudden jump from O to nsg at o = 2,
where nsg denotes the 1 value under short-range interac-
tions. Later, Sak proposed an alternative framework, known as
Sak’s criterion, where the boundary between the nonclassical
and short-range regimes shifts from 2 to o, =2 — nsr. In
this revised framework, n = 2 — ¢ is retained in the interval
1 <o <oy, and n = nsgr for o > o, thus simplifying n to
n = max(2 — o, nsr), eliminating the abrupt change in the
exponent 7. Sak’s criterion has been supported by a series of
theoretical and numerical works [3-9].

©2025 American Physical Society
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However, later Monte Carlo (MC) results with higher
precision and subsequent theoretical work suggest a differ-
ent picture, where n transitions smoothly from 2 — o near
oc=1 to nsg at 0 =2, and the threshold o, returns to
2 [10,11]. Additionally, another MC study of a percola-
tion model with LR probabilities appears to support this
picture [12]. Later, another numerical study indicated the
possible existence of a double power-law in the correlation
function near o = 2 — ngg, attributing this deviation to an
underestimation of finite-size corrections [7]. A recent study
of the long-range transverse-field Ising chain has attempted
to incorporate a multiplicative logarithmic correction into the
finite-size scaling ansatz and suggested o = 7/4 as the uni-
versality boundary, consistent with Sak’s criterion [9].

Overall, Sak’s criterion has achieved considerable recog-
nition, but controversies persist. Most numerical validations
have been focused on the two-dimensional (2D) LR Ising
model, with limited exploration of LR O(n) spin models for
n > 2. For instance, Ref. [13] studied the XY model on a
2D complex topology, which is expected to belong to the
same universality class as the 2D LR XY model. Similarly,
Ref. [14] investigated the 2D LR quantum Heisenberg model
at finite temperatures. However, these studies did not focus
on determining the threshold point o, and their simulations
were limited to relatively small system sizes, with a maximum
length of only 256. Therefore, there is a pressing need for a
more detailed numerical study of these models.

Apart from its implications for Sak’s criterion, the phase
diagram of the 2D LR XY model exhibits novel character-
istics. Although the Mermin—Wagner theorem forbids true
long-range order (LRO) in a 2D XY model with finite-
range coupling [15,16], the system undergoes a Berezinskii-
Kosterlitz-Thouless (BKT) transition with an exponent nsg =
1/4, entering a low-temperature (low-T) quasi-long-range
ordered (QLRO) phase [17]. In contrast, in the mean-field
regime o < d/2, the XY model exhibits an ordinary second-
order transition to an LRO phase. Thus, one would expect
that, in the nonclassical regime, there exists a point where
the transition type changes drastically from BKT to sec-
ond order. The nature of this crossover regime remains a
key open question. The Mermin—Wagner theorem applies
under the condition that the second moment of the interac-
tion ) r2|J(¥)| is finite [15,16]. For algebraically decaying
interactions J(r) ~ 1 /r”", this condition is violated when
0 < 2 due to the divergence of the sum. This suggests
that the theorem does not exclude the possibility of LRO
for o < 2. In 2001, Bruno provided a more stringent gen-
eralization of the Mermin-Wagner theorem for one- and
two-dimensional LR XY and Heisenberg systems, stating
that an LRO phase is allowed at sufficiently low temper-
atures for o < 2 but excluded for o > 2 [18]. Moreover,
a numerical study has shown that the 2D LR diluted XY
model displays spontaneous magnetization at low tempera-
tures for o < 2 [19]. This suggests that if Sak’s criterion holds
for the 2D LR XY model, then within the interval 1.75 <
o < 2, the system should exhibit both a BKT transition
and a low-T ferromagnetic phase. This scenario is particu-
larly intriguing—recent works [20,21] have proposed a phase
diagram where the LR XY system exhibits two phase transi-
tions for 1.75 < o < 2: first a BKT transition into a QLRO
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FIG. 1. The phase diagram of the two-dimensional long-range
XY model reveals distinct behaviors depending on the interaction
range o and the inverse temperature 8 = 1/7. In the short-range
regime (o > 2), the system exhibits BKT transitions (brown line)
into a QLRO phase. In the nonclassical regime (1 < o < 2), the
system undergoes a continuous phase transition (red line) into a
long-range ordered phase. Lastly, in the classical regime (o < 1),
the transition (purple lines) is governed by the Gaussian fixed point.
The symbols B¢ and NN denote the critical inverse temperatures
for the complete-graph and NN interaction limits, respectively.

phase, followed by another transition into a ferromagnetic
phase.

This paper provides a comprehensive study of the 2D LR
XY model, offering new insights into its critical behavior and
phase diagram. We perform large-scale Monte Carlo (MC)
simulations with the largest linear system size up to L = 8192.
Instead of further refining the estimate of critical exponents
in the nonclassical regime, we focus on both the low- and
high-temperature (high-7") properties of the model, and a brief
summary of the main results is given in Ref. [22]. The phase
diagram for the 2D LR XY model is shown in Fig. 1. For
o > 2, the system displays SR behavior: a BKT transition to
QLRO for the XY model. For o < 2, the system exhibits a
second-order phase transition, with critical exponents varying
according to o. In this work, we present a series of evidence
that strongly indicates that the threshold between LR and SR
universality is at o, = 2 for the 2D LR XY model, which
is inconsistent with Sak’s scenario and the proposed phase
diagram in Refs. [20,21].

(1) The second-moment correlation length ratio &£ /L (de-
fined in the next section) is a powerful tool for identifying
the transition type and the critical point. Specifically, for a
second-order transition, & /L curves for different L intersect
at the critical point and diverge in the low-7 phases as L
increases. In contrast, for a BKT transition, £/L curves for
different L converge to a universal function in the QLRO
phase. Our results show that, for o < 2, the scaling behavior
of £ /L is consistent with the second-order transition, while for
o > 2, typical BKT physics is observed.

(2) In the whole low-T phases, we demonstrate that, for
o < 2, the system exhibits long-range ferromagnetic order in
the thermodynamic limit, while for o > 2, the system enters a
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QLRO phase. In addition, the spontaneous symmetry break-
ing for 0 < 2 leads to Goldstone mode excitations, which
give rise to a correlation function that decays algebraically
to a constant, as g(r) ~ r~ 7 4 go. Here, the anomalous di-
mension 1y, = 2 — o is theoretically derived and confirmed
numerically. Moreover, for the marginal case of o = 2, where
theoretical derivation is absent, logarithmic behavior is ob-
served in the low-T phase, i.e., g(r) ~ 1/1Inr + go.

(3) In the high-T phases, as T decreases to the critical
point T, the growth behaviors of & for 0 <2 and o > 2
are drastically different. For o > 2, typical BKT behavior is
observed, i.e., & ~ exp(b/+/t), where t = (T — T,)/T, is the
reduced temperature and b is some nonuniversal constant.
However, for o < 2, the growth of £ increasingly deviates
from the BKT behavior as + — 0. It asymptotically follows
the power-law divergence characteristic of a second-order
transition as & ~ ¢t~¥, where v is the critical exponent of the
correlation length.

(4) We carefully determine the critical temperature and
critical exponents of the transitions for o < 2. The anomalous
magnetic dimensions 7 and the correlation-length exponent v
are continuous functions of o as long as o < 2.

The rest of this paper is organized as follows: We first
describe the model and present the enhanced MC algorithm
in Sec. II. The observables measured and their finite-size scal-
ing analysis are also included. Sections III-VI then present
detailed results and analysis, including an overall explanation
of the system at various o, the low-T and high-T behaviors,
and the critical exponents along the line of phase transitions.
Finally, we summarize our findings in Sec. VIIL.

II. MODEL, ALGORITHM, AND OBSERVABLES
A. Model

We investigate the LR XY model on a two-dimensional
square lattice with periodic boundary conditions (PBCs), with
the Hamiltonian

N
H=—Y JiSiS, 1)
i<j
where S; is a two-component unit vector corresponding to the
XY spin at the ith site, and N = L x L is the total number
of spins. The summation runs over all spin pairs, and the total
number of interaction terms is N(N — 1)/2. The spins interact
with each other via an algebraically decaying ferromagnetic
coupling,

1
th - |?1 _ 7j|2+0 ’ (2)
where 7; is the coordinate of the ith site. In the 0 — oo limit,
the model reduces to the nearest-neighbor (NN) XY model,
which enters a quasi-long-range order phase at low tempera-
ture through the celebrated BKT transition [17]. In the 0 —
—2 limit, this model becomes the XY model on a complete
graph (CG), which corresponds to the infinite-dimensional
lattice with PBC in the thermodynamic limit [23-25]. In this
work, we focus on the o > 0 regime, where the energy is
strictly extensive, i.e., the energy density of the system re-
mains finite in the thermodynamic limit.

To properly account for the long-range interactions across
the periodic boundaries, the minimum-image convention is
employed [26-28]. The square lattice with PBC maps onto a
torus, and spins interact via the shortest distance on the surface
of the torus. Specifically, the distance between any two lattice
sites in the x or y direction does not exceed L/2.

In the simulation, we introduce a normalization constant
c(o, N) which modifies Eq. (2) as

py=-20 3)

[F; — 7l

such that ) .J;; = 4. With such normalization, when o —
00, the LR model reduces to the standard XY model with
nearest neighboring interactions; when o — —2, c¢(o, N) =
4/(N — 1) also recovers the standard XY model on the fi-
nite complete graph. Another convention to deal with the
long-range interactions in finite systems is the Ewald sum-
mation technique, where the coupling constant J;; is modified
to include the interactions of all periodic images of the
system [6,8]. In the thermodynamic limit, this approach is
equivalent to our normalization scheme, and the two only
exhibit minor differences in finite systems, which quickly
vanish as L increases.

B. Algorithm

Simulating long-range interactions using the Monte Carlo
method presents two major challenges: critical slowing down
near phase transitions and escalating computational costs with
increasing system sizes. Critical slowing down occurs near
the critical point, where successive samples become highly
correlated, resulting in a substantial reduction in simulation
efficiency as system size increases. Various update schemes
have been developed to address this issue, such as cluster
algorithms [29,30], direct-loop algorithms [31], and worm
algorithms [32]. The second challenge stems from the na-
ture of long-range interactions: each spin interacts with the
other N — 1 spins, so a proposed local MC update requires
evaluating all N — 1 interaction terms. This results in a com-
putational complexity C of O(N) for the LR system, in
contrast with O(1) for the NN case. We define the com-
putational complexity as the average number of operations
required to update a single spin, serving as a measure of
the time complexity of the MC algorithm. In practice, the
CPU time per local update scales linearly with C. Several
methods have been proposed to mitigate this cost. For ex-
ample, the worm algorithm combined with the diagrammatic
Monte Carlo method expands the pairwise potential energy
into diagrammatic contributions, making the computational
complexity independent of the system size [33]. Efficient
cluster algorithms tailored for the classical long-range Ising
model have also been developed [34,35]. More recently, the
clock Monte Carlo method [36,37], based on the factorized
Metropolis filter [38], reduces computational complexities of
several classical LR models to O(1), thus offering a scalable
and efficient solution to simulating large-scale LR systems.

We simulate the LR XY model using a variant of the
Luijten-Blote (LB) algorithm [34,39]. We enhance the orig-
inal LB algorithm with the clock Monte Carlo method and
extend it to the O(n) spin model. This approach employs the
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cluster updates scheme to address the issue of critical slowing
down and adopts an efficient cluster construction strategy to
reduce the computational complexity associated with long-
range interactions.

We begin with the standard Swendsen-Wang algorithm for
a long-range O(n) spin model [29]. A Monte Carlo sweep
consists of two main steps: cluster construction and spin flip-
ping. The cluster construction starts by randomly choosing
a unit vector Sy in the n-dimensional space. Each spin S
is projected onto this reference vector, yielding the parallel
component S! = S - S,¢. Only this projection component can
undergo spin flipping during the update process, while the
remaining orthogonal components remain invariant. This is
effectively an Ising-type update scheme with the coupling
constant between S;,S; as JijSl“S}!. Spin clusters are then
formed by sequentially inspecting all pairs of spins (bonds).
Each bond (i, j) is independently activated with probability,

piy = [1 = e TY, @
with [x]* = max(0, x) and the inverse temperature 8 = 1/7T.
After all the bonds have been examined, spins connected
by active bonds form clusters, which are then independently
flipped with probability 1/2. A flipped spin is given by
S =S —28!S.¢. An updated configuration is generated af-
ter all clusters have been considered. The algorithm operates
with a computational complexity of O(N), because each MC
sweep involves evaluating N(N — 1)/2 bonds, and, on aver-
age, O(N) operations are required per spin.

In the 1990s, Luijten and Blote introduced an efficient
cluster algorithm for the long-range Ising model [34]. Their
method is based on the observation that, on average, only
O(N) among O(N 2) bonds participate in the cluster construc-
tion. They proposed a rejection-free approach using the binary
search to directly sample the next bond to activate (the bond
activation event) instead of sequentially inspecting all bonds.
This strategy reduces the number of operations per MC sweep
to O(NlogN), resulting in a computational complexity of
O(log N), which drastically increases the efficiency of the
algorithm. Nevertheless, their method is primarily limited to
the LR Ising model. Additionally, the binary search requires
a look-up table to sample the bond activation events, making
it technically challenging to apply to 2D models, and special
modifications to the coupling function are needed [6].

To overcome these limitations, we integrate the clock
Monte Carlo method with the LB algorithm. The clock Monte
Carlo method replaces the conventional Metropolis accep-
tance criterion with a factorized Metropolis filter, which
expresses the acceptance probability as a product of indepen-
dent factors; an update is rejected if any individual factor fails.
By directly sampling the first rejecting factor (first-rejection
event) using the clock sampling technique, the computational
complexity is significantly reduced from O(N) to O(1) [36].
Recognizing the similarity between first-rejection events and
bond activation events, we apply the clock sampling technique
to efficiently sample bond activations.

Following the Ref. [36], we first introduce a configuration-
independent activation probability for each bond,

pij=1—e P, (5)

This probability depends solely on the strength of the inter-
action J;; and ensures that for any spin configuration, p;; >
pij. Accordingly, p;; is referred to as the bound activation
probability and activating a bond according to p;; is called
a bound activation. The actual activation of a bond (i, j) then
proceeds in two steps: a bound activation is first attempted
with probability p;;; if successful, one performs a resampling
with the relative probability:

Pijrel = Pij/ Pij- (6)
Through this two-step process, an explicit evaluation of the
bond condition Eq. (4) is only required when a bound ac-
tivation occurs. We exploit this property to achieve efficient
sampling of bond activations.

In along-range O(n) spin model, there are (N — 1)/2 types
of displacement vectors 7. For each 7, there are N interactions
J(#) due to the translational invariance of the system with
PBC, composing a total of N(N — 1)/2 interaction pairs [40].
All bonds corresponding to the same 7 then share an identical
0. To construct clusters, we first generate, for each type of
7, a list of bound-activated bonds. Then, these bonds are
resampled to determine the actual activation. The list can
be efficiently generated by sampling the distribution P(k) =
p(1 — p)F=!, which is the probability that the kth bonds are
bound activated, while the preceding k — 1 bonds are rejected
and skipped. This method is particularly advantageous when
the p is small, which is typically the case near 7;; most bonds
are skipped before a bond is inspected for activation, signif-
icantly reducing the overall computational cost. For a type
of bond that consists of N bonds with p, the bond activation
process works as follows:

(a) Initially, set index k = 0.

(b) Calculate the index of the next bond to inspect using

In (rand)
In(1— i))J’
where rand is a uniform random number in (0,1] and |x]
denotes the floor function that returns the integer part of x.

(c) If k£ < N, attempt to activate the kth bond with relative
probability pg 1 in Eq. (6).

(d) Repeat from step (b) until k > N.

The cluster construction process concludes once all types
of bonds have been considered. This procedure leads to a
considerably faster algorithm by reducing both the num-
ber of bond inspections and the number of random number
generations. Compared with the LB algorithm, our method
eliminates the need for a look-up table and alleviates
truncation errors associated with discrete cumulative proba-
bility integration approximations. It faithfully reproduces the
stochastic dynamics of the original multicluster method while
achieving O(1) computational complexity.

In this work, we performed extensive MC simulations of
the LR XY model using the enhanced LB algorithm, with
linear system sizes ranging from L = 16 to L = 8192. Each
system is thermalized for 4 x 10°> MC sweeps, which is suf-
ficient to reach thermal equilibrium. For system sizes L <
4096 at low temperatures 8 = 1, 2, 4, 8 and near the critical
temperature of various o, we collect over 2 x 10° samples
to achieve high statistical accuracy. Under other parame-
ters, where high-precision data are not required, the minimal

k<—k+1+{ 7
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number of samples is 4 x 10°. Simulations for the largest
system size L = 8196 are conducted at selected parameters,
and the results are obtained from over 4 x 10* samples. Our
simulation for the 2D LR XY model near o = 2 does not
encounter strong critical slowing down issues. Specifically,
for a simulation with L = 8192 and ¢ = 2 near the critical
point T, the integrated autocorrelation time tj, in the unit of
MC sweep is &9 for the energy-like quantity and ~4.6 for the
squared magnetization. The average computational complex-
ity is &2 operations per spin, which remains virtually constant
for all simulations near 7, and it takes around 11 CPU days
to go over 10* MC sweeps on a Hygon C86 7185 CPU (32
cores, 2.0 GHz base clock). Moreover, the CPU time per spin
update is proportional to the computational complexity, and
the space complexity of the algorithm scales linearly with
system volume N. For the largest system size L = 8192, our
implementation requires *10.5 gigabytes of memory.

C. Sampled quantities

Various physical quantities are sampled in the simulation
to investigate the properties of the model. After thermaliza-
tion, the observables are measured after every MC sweep.
For a given spin configuration, we sample the following
observables:

(a) Total energy from the NN interactions, & =
—Jon Z(i’ i S;-8;, where (i, j) denotes nearest-neighboring
pairs of spins and J,, = c(o, N)J is the NN coupling strength.

(b) Magnetization density M =L Zi’io S;, and its
Fourier mode M; = L™?| > S;e*Ti|, where k = 2T”fc, the
smallest wave vector of the reciprocal lattice in the x direction.

The measurement consumes only a small fraction of the
total simulation time. We then obtain the ensemble average
({-)) of the following quantities:

(i) The magnetic susceptibility x = L?>(M?) and its
Fourier mode x; = L*(M}).

(ii)) The second-moment correlation length [41-43], de-
fined as

ond = m (M2)/(M7) — 1. ®)
(iii) The Binder ratio of magnetization
(M?)?
On =" ©)
(iv) The scaled covariance between ¢ and M2, defined as
12
K=—0m (eM?) — (e)(M?)). (10)

(v) The specific-heat-like quantity, defined as
G = BLA((E%) — (e))), (1

where B = 1/T is the inverse temperature.

Note that the second-moment correlation length &5,4 is
different from the commonly referred to exponential corre-
lation length &,. The former is defined based on the Fourier
spectrum of the correlation function [42,44], while the latter
is obtained by fitting the exponentially decaying correlation
function. Both correlation lengths are well-defined in the dis-
ordered phase and become asymptotically equivalent in the

thermodynamic limit [45]. In practice, the second-moment
correlation length &,,4 can be easily measured in MC simu-
lations, whereas determining &, can be challenging because
corrections simultaneously arising from both finite distance
and finite system sizes and their mixing. In addition, near and
at the critical point, &.,, becomes ill-defined since the correla-
tion function exhibits a power-law scaling. In the long-range
ordered phase, it is extremely challenging to extract &, since
the correlation function saturates to a nonzero constant as the
distance becomes infinitely large. Throughout this work, un-
less specified otherwise, the correlation length & refers to the
second-moment correlation length &,,4, which is well-defined
in all disordered, critical, and long-range ordered phases.

The dimensionless ratio &/L is an effective tool for
identifying the critical points and the phase-transition proper-
ties [43,46,47]. In the disordered phase, the correlation length
& is finite, and the ratio £/L vanishes as L increases. At
criticality, £ is proportional to the linear system size L from
the algebraic decaying behavior of the correlation function,
and the ratio £ /L takes a universal value in the thermodynamic
limit. In the ordered phase, £ /L diverges since M? remains
finite while M} vanishes with increasing L. As a consequence,
for a continuous phase transition separating a long-range or-
dered from a disordered phase, the intersection of & /L curves
for different L accurately pinpoints the critical point. In the
case of a BKT transition, however, the ratio converges to a
smooth and universal curve since the whole low-7 QLRO
phase is essentially critical with an algebraically decaying
correlation function.

Throughout the simulation, the error bars are estimated us-
ing standard error analysis techniques: for simple observables,
such as &, M2, and M ,g, the error bars are calculated using the
standard binning method; for composite observables obtained
by the arithmetic combinations of simple observables, such
as the second-moment correlation length £ and Binder ratio
0, the error bars are estimated using the standard jackknife
method.

D. Finite-size scaling analysis

Finite-size scaling (FSS) analysis is an essential technique
in numerical investigation of critical phenomena. In the lan-
guage of the renormalization-group (RG) theory, the critical
behavior of systems belonging to the same universality class
is governed by a common fixed point. Near critical points,
the free energy, and thus other physical observables, can be
expressed as universal functions of scaling fields. FSS extends
these universal functions to finite systems, enabling precise
determination of critical points and accurate extraction of crit-
ical exponents. Near the critical point, the free-energy density
f(,h, u, L") is a function of the thermal scaling field #,
the magnetic scaling field 4, an irrelevant field u, and the
finite-size field L~'. Then, the FSS behavior of free-energy
density is given by

ft, hyu, LY = L= f@ L, hL  ul”, 1)+ g(t, h), (12)

where y, = 1/v is the thermal renormalization exponent (v
is the correlation-length exponent); y, is the magnetic renor-
malization exponent; y; < 0 is the leading irrelevant scaling
exponent; and g is the analytic part of free-energy density.
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The scaling fields are nonuniversal functions of microscopic
interactions and external physical parameters. To the lowest
order, ¢ is proportional to T — T, i.e., the distance between
temperature and critical temperature; % is proportional to the
physical external magnetic field H. The irrelevant field u
reflects the distance of criticality of the system and the fixed
point.

The FSS behavior of various physical observables near 7,
can be derived from Eq. (12). Here, we present the scaling
form of several key quantities: (a) magnetic susceptibility y,
(b) scaled covariance K, and (c) dimensionless quantities,
such as Q,, and £ /L.

(a) FSS of x. The magnetic susceptibility x is calcu-
lated from the averaged squared magnetization (M?), which
is propositional to 8 f/dh> at h = 0. Thus, near the critical
point, the magnetic susceptibility scales as

x =L@, Liu, 1)+ -+, (13)

where ¥ is a universal function, and the contribution due
to g is not specified. The leading exponent 2y, — d can be
replaced by 2 — n, where 7 is the anomalous dimension of the
correlation function at the critical point.

(b) FSS of K. The quantity K is proportional to the cor-
relation between the squared magnetization M> and the NN
energy €. The NN energy ¢ shares a similar scaling behavior
as the total energy E near T, as ~L"~¢. Specifically, this can
be demonstrated as follows:

af  af ot
(e) = —— ~ =
aon  0f 3o

~ L, (14)

where 0t /dJy, acts as a constant and therefore does not affect
the scaling behavior [40,48]. Consequently, the correlation
between M? and ¢ is proportional to the temperature derivative
of squared magnetization % (M?) [40]. The FSS form of K at
the critical point t = 0 is then given by

K Lo (M?) Lo (15)
X - =0 = — X

(M?) 3t X0t |-

~ apl” (1 + a\L) 4+ ap L T2 o (16)

where a; are nonuniversal constants. The leading L scaling
behavior in Eq. (16) makes K an excellent quantity to estimate
the thermal scaling exponent y, = 1/v.

(c) FSS of dimensionless ratios. Dimensionless ratios,
such as Binder ratio Q,, and correlation length ratio £ /L, have
been widely used in FSS analysis to locate the critical point of
phase transitions [46,47,49]. Near the critical point, the Binder
ratio follows the scaling behavior,

Qm(t7ua L)= Qm(tLYt’uL,\’u’ 1)+ ) (17)

where the ellipsis denotes omitted correction terms arising
from the field dependence of the analytic part of the free-
energy and higher-order contributions. Similarly, since the
correlation length & scales as the system size L near T, the
FSS form of correlation length ratio £ /L is given by

E/L ~E@L", ul’, 1), (18)

where &(-) is a universal scaling function.

III. OVERVIEW OF RESULTS

Before delving into the detailed analysis of the LR XY
model, we provide an overview of the main findings to fa-
cilitate a better understanding. As the long-range model enters
the nonclassical regime in o < oy, the critical behavior differs
from that of the short-range regime. For the LR Ising model,
the universal properties of the transition, such as the critical
exponents and other universal quantities, vary as o in the non-
classical regime. Therefore, previous studies of the LR Ising
model focus on the accurate extraction of critical exponents
or values of universal ratios like Binder cumulant, which,
however, can be extremely subtle and challenging [6,8,10].
In contrast, for the LR XY model, we expect a much more
evident signature when the system enters the nonclassical
regime—the type of transition changes from a BKT transition
to a second-order transition. The change in transition type
leads to qualitatively distinct behaviors in both the low- and
high-T phases, as well as in the critical region. As a result, de-
termining the crossover point o, becomes considerably easier
in the LR XY model than in the LR Ising case.

Based on extensive MC simulations, we identify three dis-
tinct regimes in the phase diagram of the LR XY model: the
classical regime (o < 1), the nonclassical regime (1 < o <
2), and the short-range regime (o > 2), as illustrated in Fig. 1.
For o < 1, the system undergoes a second-order transition
to an LRO low-T phase, with critical behavior governed by
Gaussian mean-field theory [50]. In the short-range regime
with o > 2, the system exhibits a standard BKT transition
to a QLRO phase. The nonclassical regime (1 < o < 2) is
particularly noteworthy, where detailed FSS analysis reveals
a second-order phase transition to a ferromagnetic phase at
low T with o-dependent critical exponents depending. This
finding contrasts with the previously suggested phase diagram
based on field theoretical analysis—the proposed intermediate
QLRO phase in the regime 1.75 < o0 < 2 is not observed
from our data [20,21]. This discrepancy is likely due to some
higher-order terms being neglected in their work [51]. More-
over, our results suggest the crossover point between SR and
LR universality is at o = 2, rather than at 0 = 1.75 as pre-
dicted by Sak’s criterion.

The second-order phase transition in the nonclassical
regime is strongly hinted at in Fig. 2 where the correlation
length ratio £/L is plotted as a function of the inverse tem-
perature (. Figure 2 presents £/L versus 8 for o = 1.25,
1.75, 1.875, 2, 2.1, and 3. The data from system sizes ranging
from L = 64 to L = 4096 are shown for a comprehensive
examination of finite-size effects. For o < 2, £/L curves of
different L exhibit a universal intersection at some finite tem-
perature. This can be seen more clearly in the enlarged view
in Fig. 15 where the intersection between curves converges to
a finite value. In the low-7 phase, £ /L diverges as the system
size increases, reflecting the emergence of long-range order.
This typical scaling behavior indicates a second-order phase
transition into an LRO phase, and the crossing points mark
the location of the critical points 7,. This differs from the
BKT transition in the SR regime, for which the results are
also shown as a comparison. For o = 3, the £ /L curves do not
show a crossing; instead, curves for system sizes greater than
L = 64 converge to a universal function at low temperatures,
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§/L

FIG. 2. Overview of the dimensionless ratio & /L for different o values. The phase-transition type changes from a second-order transition
for o < 2 to a BKT-type transition for o > 2, as shown here. The second-moment correlation length divided by L, £ /L, is plotted as a function
of inverse temperature g for various ¢ values: (a) o = 1.25,(b) o = 1.75,(c) 0 = 1.875,(d) 0 = 2, (¢) 0 = 2.1, and (f) o = 3. System sizes
range from L = 64 to L = 4096. For o < 2, the curves for different system sizes exhibits a intersection, which can be seen more clearly in
Fig. 15, indicating a second-order phase transition. For o = 3, all £ /L curves for L > 64 converge after the transition point, a hallmark of
a BKT transition. In the o = 2.1 case, smaller system sizes (up to L = 1024) show a crossing due to the strong finite-size effect. For larger
system sizes (L = 2048 and L = 4096), the £ /L values tend to converge in the low-T" phase. This subtle case will be elucidated in Sec. IV C.

confirming a BKT transition to a QLRO phase. However, at
o = 2.1, the behavior is more nuanced. While the £ /L curves
of smaller system sizes (up to L = 1024) seemly suggest a
crossing, those for larger sizes (L = 2048 and L = 4096) start
to converge after the critical point. Such behavior reflected
the strong finite-size effect near the boundary between LR
and SR universality. A systematic and detailed analysis will
be given later. We show that, in the low-T phase, the squared
correlation-length ratio, (£ /L)?, diverges as ~L>~? foro < 2
and logarithmically as ~InL for o = 2; in contrast, §/L
statures to some finite and 7-dependent value for o = 2.1.
In the high-T phase when approaching the critical point, the
correlation length & exhibits power-law divergence for o < 2,
indicative of a second-order phase transition; in contrast, &
diverges exponentially for o = 2.1 and 3, indicative of a BKT
phase transition. Moreover, the fitted critical exponents also
separate 0 < 2 from the SR regime.

IV. LONG-RANGE ORDER AND GOLDSTONE MODE
AT LOW TEMPERATURE

In this section, we conduct a comprehensive study of the
system’s low-T properties. In Sec. IV A, we show the exis-
tence of LRO in the low-T phase for o < 2. In Sec. IV B, we
investigate the Goldstone mode excitations in the low-7 phase
for o < 2, demonstrating that the correlation function adheres
to the form g(r) = go + cr~™ where ny =2 — o. For 0 = 2,
we propose a possible logarithmic behavior and verify it nu-
merically. Subsequently, the QLRO phase at low temperatures

for o > 2 is discussed in Sec. IV C. Finally, we revisit the
boundary case of ¢ = 2 and examine its distinctive finite-size
scaling in Sec. IV D. Our research primarily focuses on o
values of 1.75, 1.875, 2 at various low temperatures charac-
terized by 8 = 1, 2, 4, 8. Additionally, cases of 0 = 2.1, 3 are
partially included for comparison.

A. Long-range order for o < 2

In this part, we demonstrate the existence of LRO in the
low-T phase for o < 2. We first study the scaling behavior
of the squared correlation length ratio (£ /L)?, which exhibits
distinct behavior in the LRO and QLRO phases. Specifically,
for given T < T, as the system size increases, this ratio
diverges in the LRO phase, while in a QLRO phase, it con-
verges to some nonzero constant. Figure 3 displays (£/L)? as
a function of L at inverse temperatures § = 1 and 8 =2 in
a semilogarithmic scale, revealing the distinct low-T' scaling
behaviors of (£/L)? for various values of o. It is noteworthy
that the critical point B, lies in the range 0.6-0.8 for o < 2.2,
and around 0.9 for o = 3. Therefore, Fig. 3 reveals the low-T
properties for all the o cases at B =1 and 2. For o < 2,
the curves bend upward as L increases, and this divergence
can be well-fitted by a power-law function, which will be
discussed later. For o = 2, the data points fall onto a straight
line, suggesting that (£ /L)* diverges logarithmically with L.
For both cases, despite the different forms of scaling, (£ /L)>
diverges as L increases, indicating the presence of LRO in the
low-T phase for o < 2. In contrast, for o > 2, the system
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FIG. 3. Different behaviors of (£ /L)? in the low-T phase for var-
ious . (£/L)? as a function of system size L in the semilogarithmic
coordinates is shown for various o values at inverse temperatures
(@) B =1 and (b) B =2 (both below the critical points for all o
cases, i.e., 0.6-0.8 for o < 2.2 and around 0.9 for o = 3). The linear
behavior of the red squares demonstrates the logarithmic divergence
of (¢ /L)? for the case of 0 = 2. For 0 < 2 (green dots in the figure),
(&/L)* diverges faster, indicating a possible power-law divergence.
This is confirmed in Sec. IV B. The diverging (£ /L)” is a signature
of the LRO in the low-T phase for o < 2. For ¢ > 2 (the blue dots),
(&/L)? tends to converge, indicating QLRO in the system.

is in the QLRO phase at low temperatures, and (£/L)* is
expected to converge. This can be seen clearly in the case of
o =3 at both B = 1 and 2 where (§/L)* rapidly converges
to a constant as L increases. However, for o = 2.1 and 2.2,
the proximity to the marginal case o = 2 results in strong
finite-size effects, leading to a slow convergence of (£/L)>.
As shown in Fig. 3, for both § =1 and 2, (E/L)2 curves
slowly increase at a slackening rate, and we expect them to
finally converge to a constant. In Sec. IV C, we further verify
this expectation. Finally, we comment that the similar (£ /L)?
behavior in 8 = 1 and B = 2 indicates it holds for the whole
low-T phase instead of at a specific temperature. Therefore,
the system should exhibit LRO across the whole low-T phase
foro < 2.

The Monte Carlo data of the squared magnetization (M?)
are presented in Figs. 4(al)—4(c1) for various . The squared
magnetization is plotted against its leading correction term
(explained below), demonstrating the extrapolation of (M?)
to the L — oo limit. For o = 1.75, 1.875, and 2, at 8 > 1,
(M?) tends to converge to nonzero values in the thermody-
namic limit, which strongly indicates the existence of LRO
in the low-T phase for o < 2. It will be shown that (M?)
follows a power-law convergence for o < 2 and a logarithmic

convergence for o = 2, and the corresponding fitting form of
(M?) is explained below.

For the LR XY model, due to the spontaneous breaking of
continuous symmetry, the LRO phase shall exhibit Goldstone
modes. It is shown in Sec. IV B that the correlation function
has the form g(x) = go + cx~ " where n, = 2 — 0. Therefore,
considering the relationship between (M?) and correlation
function: (M?) ~ 7 [ g(r)d®r, (M?) is fitted with the follow-
ing ansatz:

(M*) = go+ L™ "(ap + a1 L™), (19)

where a; L~ term accounts for additional corrections. For
o = 2, however, the correlation function cannot be easily ob-
tained from a Goldstone mode analysis due to the degeneracy
between the LR and the SR interaction terms; nevertheless,
in Sec. IV B, we propose a possible scaling form at o = 2:
Xk ™~ Lz/ In(L/Ly) or (M,f) ~ 1/In(L/Ly). Since M, is the
Fourier mode of M, (M?) is expected to exhibit similar scaling
behavior, with an additional constant term. Thus for o = 2,
(M?) is fitted as
2 ao

(M7) g°+1n(L/LO)' (20)
A detailed discussion of such logarithmic behavior in the
marginal case of o = 2 is provided in the next Sec. IV B.

In Figs. 4(al) and 4(bl) (o = 1.75 and 1.875), we plot
the x axis as L™™, the leading correction term according to
Eq. (19). The plots reveal an asymptotic linear relationship,
except for the small system-size data, which is due to finite-
size effects. The nonzero intercepts in the y axis reveal the
presence of spontaneous magnetization in the low-7 phases.
Figure 4(cl) illustrates the logarithmic scaling (M?) for o =
2, where we plot (M?) versus 1/1In(L/Ly), with Ly a fitting
parameter. The apparent linear relationship confirms the log-
arithmic scaling of (M?) and the data fit well to the ansatz
in Eq. (20). Again, the spontaneous magnetization is evident
from the nonzero intercept.

Extrapolating (M?) to the thermodynamic limit in the first
three panels in Fig. 4 demonstrates the existence of LRO in the
low-T phase for o < 2. However, due to the large finite-size
effect, for 0 = 1.875 and 2, (M?) converges slowly. To miti-
gate the finite-size corrections and better observe the LRO, we
define the residual squared magnetization,

M? = (M?) — b(M}), (21)

where b > 0 is some constant to be determined. Here, (M,f) is
the squared Fourier mode of magnetization, which is closely
related to the Fourier transform of the correlation function,
(M?) ~ & [ g(r)e*"d®r. Therefore, for o < 2, (M}) scales as

(M) = L™ (ag + a1 L™), (22)

where a;L~ attributes to correction terms. A notable dif-
ference between the scaling behavior of (M?) and (M,f) is
that (M?) vanishes in the thermodynamic limit. Similarly for
o = 2, we expect (M,f) behaves as

2 _ ao
(M) = In(L/Loy)’ 23)

A detailed discussion on this scaling behavior will be pro-
vided in the next Sec. IV B. Since (M,%) shares the same
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FIG. 4. The existence of spontaneous magnetization for o < 2 in low-T phase. The squared magnetization (M?) is plotted as a function
of system size L for various temperatures at (al) o = 1.75, (bl) 0 = 1.875, and (c1) o = 2. The x axis represents the leading finite-size
correction term, which varies by panel: L™ (n, = 0.25, 0.125 for o = 1.75, 1.875, respectively) in panels (al) and (b1), 1/1In(L/Ly) in panel
(c1). The fitting parameter Ly = e=>*, e7%3, ¢7638 ¢=%2 for B = 1, 2, 4, 8 in panel (c1). For all three panels, the fitting lines align with the
data points, and intersect with y axis at positive values, indicating the spontaneous magnetization at low temperatures in the thermodynamic
limit. To diminish the finite-size correction, the plots of M? = (M?) — b(M?) are presented at (a2) o = 1.75, (b2) o = 1.875, and (¢2) o = 2.
The x axis represents the leading correction term: L% in panel (a2), L=° in panel (b2), and L=°4 in panel (c2). b = 22 for panel (a2), 48 for
panel (b2), and 149, 175, 152, 154 in 8 = 1, 2, 4, 8, respectively for panel (c2). After subtracting a positive quantity, Mf converges faster and
continues to reach a positive value at the thermodynamic limit with smaller finite-size corrections, which is strong evidence of spontaneous

magnetization.

scaling as the leading correction term in (M?), selecting
an appropriate value for b can effectively cancel out the
leading correction, thus reducing the finite-size effects in
M?. More importantly, since b is a positive constant, M?
act as a lower bound of (Mz), and in the L — oo limit,
one has M? = (M?). Hence, if M? converges to a posi-
tive value in the thermodynamic limit, (M?) must also be
positive.

The lower three panels of Fig. 4 display M? as a function
of L= for o = 1.75, 1.875, 2, with the values of b and w
provided in the figure caption. With reduced finite-size cor-
rections, the data points converge quickly to the extrapolated
thermodynamic-limit value. The extrapolated curve clearly
intersects the y axis at positive values, indicating finite magne-
tization density. The discrepancies at smaller L values indicate
the presence of additional, smaller corrections beyond L.
Furthermore, the coefficient of the leading correction term of
M? is negative, causing M? to increase with the size of the
system. In all cases, the values of M? for the largest system
size are already positive. Consequently, in the L — oo limit,
one must have (M?) > Mr2 > (. Thus, we conclude that the
system retains long-range order in the low-7 phase foro < 2.

The fitting detail of Mf is shown below. First, the fitting of
Egs. (19) and (23), provides the amplitude of the correction
term we aim to eliminate, namely, ay. The ratio of ag in (M 2y

and (M?) determines the value of b in M?. M? is then fitted
with the ansatz

M2 =gy +a L™, (24)

where gy is the squared magnetization in the thermodynamic
limit, and o is the subleading correction exponent, which
remains relatively constant across different temperatures.

It is worth noting that our conclusion partially contradicts
the theoretical arguments presented in Ref. [18], stating that
the 2D LR XY and Heisenberg system cannot sustain LRO at
o = 2. This discrepancy between the theoretical predictions
and our numerical evidence underscores the marginal case at
o = 2 as an open and intriguing problem.

B. Goldstone mode

As discussed in the previous section, the spontaneous
breaking of continuous symmetry leads to the emergence of
Goldstone mode excitations in the LRO phase [52]. In this
section, we provide both theoretical arguments and numerical
evidence for the algebraic decay of the correlation function
in the low-T phase for o < 2, i.e., g(x) = go + cx~ " with
ne = 2 — o. Here, x and g(x) represent the distance and corre-
lation between two sites. This power-law behavior arises from
the low-energy Goldstone mode excitations. We also examine
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the marginal case ¢ = 2, where we conjecture a logarithmic
decay of correlations and support this hypothesis through
numerical analysis.

Theoretical derivation. The reduced Hamiltonian of long-
range O(n) spin model can be written in momentum-space
as [2]

e [ Yt K e V)
BH = ) Tt Ky (q) - ¥(—q)
d‘q dig, d‘gs
d 7] a4
(2m) Q2m) (2m)

x W(gq1) - ¥(q2) - ¥(g3) - ¥(—q1 —q2 —q3), (25)

where ¢ denotes a d-dimensional momentum variable and
W(q) is the Fourier transform of a locally defined n-
component spin field W(x) [¥(x) and W(q) respectively
represent the spin field in real space and momentum space;
for simplicity, they share the same symbol, and we hope this
will not lead to any confusion]; ¢, K, K, and u are inter-
acting parameters, and ¢ varies linearly with the distance to
criticality.

In the last section, we demonstrated the existence of spon-
taneous magnetization and continuous symmetry breaking at
low temperatures for o < 2. Thus, we can adapt the mean-
field approximation and consider small transverse fluctuations
around it:

W(x) = Ve + Wr(x)e, (26)

where €; represents the longitudinal direction vector along
the mean-field spin direction, while &, denotes the transverse
direction vector; W = /—¢/4u is the result of the mean-field
approximation and Wy refers to the transverse fluctuation of
magnetization in the transverse directions. Up to the second
order, the reduced Hamiltonian becomes [52]

t— —4 1 s K
BH = V(qu +u¥ ) +5 D <Kaq + jqz)l%(q)lz,
q

27)
where V denotes the volume of the system. For o < 2, K;¢”
is the leading term, and hence %qz can be neglected. Thus,
the probability of a particular fluctuation configuration has the
Gaussian form:

K,
P () oc e oc [ Jexp <Vq”|%<q>|2). (28)
q

Hence, the two-point correlation function in the momentum
space is

N ‘Sqfq’v
(Vr(@Vr(g)) = 2K, (29)

and in the real space is

1 i
(Wr@)Wr () = 75 3 (Wr(@Wr(g))e ™™™

7.9
1 elqx—x")
v p, 2K, q°
1 ddq eiq(x—x’)

= T E— 30
2K, J @) q° (30)

Considering the integration
ddg eirx
@ny ¢
Divide the integral into angular and radial components and

we can analyze its scaling to x without explicitly computing it
(note that our derivation is under the condition of 0 < 2 = d):

ddq eiq-x _ dQ / eiqxcos&

(27T)d q° - (27T)d qqa—d-H
 od dQ d eiycos&
- (27.’:)(1 yya'fd+1
~xo, (31)

The correlation function:
gx) = (¥(x) - ¥(0))
=T+ (Ur(x) - W7 (0))
=T e (32)

Hence, for o < 2 at low temperatures, the correlation function
takes on an algebraic form: g(x) = go + cx™", with n, =
2 — 0. Note that the above derivation is applicable only at
low temperatures; thus, we do not need to consider the renor-
malization of K,g? terms as the system is far from criticality.
Near or at the critical temperature, the system exhibits little
or no spontaneous magnetization, and fluctuations play a sig-
nificant role that can no longer be considered negligible. For
o = 2, however, the derivation above is not applicable, and
the exact form of the correlation function remains unknown.
In Eq. (25), two terms—%q2 and K, g°—become degenerate,
potentially leading to logarithmic behaviors. Next, we present
the numerical result to verify the form of the correlation
function—g(x) = go + cx~"—for o < 2, and the logarithmic
behavior of the system at o = 2.

Numerical observation. We have established that, at low
temperatures for o < 2, the correlation function takes the
form g(x) = go + cx~ ™. While we aim to observe this behav-
ior in our numerical results, directly analyzing the correlation
functions poses challenges due to large finite-size corrections
and the unknown constant gy. Instead, the Fourier mode of
magnetic susceptibility x; provides a more reliable means of
analysis, as the constant term g is effectively canceled out
during the Fourier transformation. If the correlation function
in Eq. (32) is valid, then y; should scale according to y; ~
L*>~"_ This scaling relation allows us to verify the system’s
behavior at low temperatures for ¢ < 2 and confirms whether
the predicted power-law decay of correlations holds in our
numerical simulations.

Up to the leading finite-size correction term, we propose
the fitting ansatz of x; with

Xk = L*"(ag + biL™®). (33)

With 7, fixed at 2 — o, the x; data can be fitted well, and
the results are presented in Fig. 5. The figure displays xi
as a function of system size L in a double-logarithmic plot
for o = 1.25, 1.75, and 1.875. In all cases, the data points
for x; are close to a linear behavior, indicating the antici-
pated power-law relationship between x; and L. The slight
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FIG. 5. The demonstration of the presence of Goldstone mode. The log-log plots of x; versus system size L are shown for different
temperatures at (a) o = 1.25, (b) 1.75, and (c) 1.875. As L increases, the data points approach power-law growth with increasing system size
L, confirming the form of the correlation function Eq. (32) and the presence of the Goldstone mode. Furthermore, the fitting lines at different
temperatures are parallel for a certain o, aligning with the prediction that the value of 7, remains independent of temperature.

upward curvature at smaller system sizes is attributed to finite-
size correction terms. This linear trend in the large-L regime
demonstrates that the susceptibility follows the scaling rela-
tion x; ~ L?>~" and thus confirms the correlation function in
Eq. (32). Additionally, the curves for different temperatures
are almost parallel across all values of o, and they can nearly
be collapsed onto a single curve through vertical shifting. This
observation indicates that the leading scaling exponent n, is
temperature independent.

At low temperatures, where spontaneous magnetization
exists, according to the definition of £ in Eq. (8), (§/L)? is
expected to follow the scaling relation (§ /L)* ~ (M?)/(M}).
Since both (M?) and (M,f) are subject to similar finite-size
corrections, their ratio is likely to cancel out the amplitudes of
some communal correction terms, which may lead to a smaller
finite-size effect. Considering the scaling form of (M?) and
(M,f), i.e., Egs. (19) and (22), (£ /L)* are fitted to the equation

(£/L)* = apL™ + c. (34)

In this approach, without considering any unknown correction
terms, the data can be fitted well enough, indicating that
(£/L)? indeed exhibits a smaller finite-size correction. The
detailed fitting results and final estimates for n, are presented
in Tables I and II, respectively. The results in Table II are
consistent with our conjecture that n, = 2 — 0. While slight
deviations are observed foro = 1.75and o = 1.875at 8 = 1,
these are reasonable given the proximity to the critical point
B = 0.68380(7) and 0.707 37(7). Our theoretical derivation
is most applicable in the low-T regime, where the system is far
from the critical point, and fluctuations are minimal compared
with spontaneous magnetization. At even lower temperatures,
specifically for 8 = 2, 4, and 8, all estimated values of n, are
compatible with our derivation.

In the special case of o =2, where 1, =0, we specu-
late that x; may exhibit a logarithmic scaling behavior, as
Xk ~ L*In(L/Ly)", where 7, is the critical exponent of the
logarithmic correction. To test this hypothesis, we attempt to
fit xx using the following expression:

Xk = aoLl*/(InL + ¢))™, (35)

where ag, Ly, and 7y are unknown parameters. The re-
sults of these fits are shown in Table III. It is evident that,
across different temperatures, the value of 7, from the fitting

consistently approximates 1. So we fix #;, = 1 and refit x; to
Eq. (35), with results also presented in Table III, supporting
a possible scaling behavior: y; ~ L?/In(L/Ly). This further
implies that, at o = 2, the real-space correlation function
asymptotically saturates to a nonzero constant as an inverse
logarithm of distance,

for x > 1, where a and b are nonuniversal constants. This
unusual inverse logarithmic decay of correlations highlights
the nontrivial and marginal nature of the o = 2 case.

In Fig. 6, we provide additional evidence by plotting L2/ x;
as a function of L, with the x axis in logarithmic coordinates.
All the data points for different low temperatures show linear
behavior, indicating L?/xx ~ alnL + b, which aligns with
our assumption that x; ~ L?/In(L/Ly). Moreover, from the
fitting Table III, one can find that the amplitude ay is propor-
tional to the temperature 7. Therefore, we propose that xi
should satisfy x; = A(T)Lz/ In(L/Ly) with A(T') o< T being
an analytical function of T'.

21In(x/b) — 1

g(x) ~ go+ a( InCe/b)

C. 0 > 2 cases

It is well-established that for o > 2, the LR system belongs
to the SR universality and exhibits QLRO at low temperatures.
In this section, as a comparison to the o < 2 case, we briefly
demonstrate the low-T properties of the QLRO phase for o >
2,using 0 = 3 and o0 = 2.1 as examples.

Figure 7 plots (M?) as a function of L for o = 3 at double-
log coordinates. The linearity of the data points indicates
the scaling behavior (M?) ~ L™" and hence the correlation
function’s form is g(r) ~ r~". As L — oo, (M?) reduces to
zero, thus no spontaneous magnetization at low temperature.
Moreover, the slope of the fitted line for the data of § =1 is
greater than that of § = 2. This suggests that the value of n
decreases as the temperature approaches zero. All these prop-
erties are typical signatures of QLRO. The case of o = 2.1
is not presented in Fig. 7 because it exhibits strong finite-size
corrections due to the adjacency to o = 2.

The QLRO nature of o = 2.1 can be revealed by analyz-
ing the behavior of (£/L). In Fig. 3, we compare different
behaviors of (£/L)? for varying o. The diverging behavior
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TABLE 1. Fits of (¢/L)? to Eq. (34) for o = 1.25, 1.75, and 2. “DF” means “degree of freedom.”

o B Linin e ap c x*/DF
1.25 1 32 0.751(1) 0.357(4) —0.46(3) 10.9/11
48 0.750(2) 0.361(5) —0.50(5) 9.8/10
2 32 0.755(2) 0.93(1) —0.9(1) 10.0/10
48 0.753(3) 0.95(2) —1.0(2) 9.1/9
4 48 0.750(4) 2.13(6) —2.6(5) 7.9/9
64 0.751(5) 2.10(7) ~23(8) 7.6/8
8 32 0.746(4) 4.5(1) —5.209) 8.3/9
48 0.742(6) 4.6(1) —6(1) 7.7/8
1.75 1 64 0.235(3) 1.98(6) —2.1(1) 4.6/8
9 0.235(4) 1.97(9) —2.1(1) 4.6/7
2 32 0.246(2) 5.2(1) —5.6(2) 5.5/10
48 0.247(3) 5.1(1) —5.5(2) 5.4/9
4 32 0.254(2) 10.8(2) —11.6(4) 3.5/10
48 0.253(3) 10.9(3) —11.7(5) 3.5/9
8 32 0.250(4) 24(1) —26(1) 8.1/10
48 0.254(5) 23(1) —24(2) 7.0/9
1.875 1 3 0.093(3) 6.13) —6.4(4) 7.2/9
48 0.100(4) 5.5(3) —5.7(3) 3.9/8
2 32 0.121(4) 12.0(7) —12.4(8) 6.5/9
48 0.117(6) 13(1) —13(1) 5.9/8
4 32 0.123(7) 27(2) —28(3) 10.4/9
48 0.12(1) 29(4) —30(4) 9.4/8
8 32 0.118(5) 60(4) —63(5) 4.6/9
48 0.126(6) 53(4) —56(5) 3.2/8

for o < 2 indicates the existence of LRO, whereas the con-
verging behavior shows the nature of QLRO. For ¢ = 2.1,
due to significant finite-size corrections, (£/L)> converges
slowly, causing some ambiguity. To clearly demonstrate the
converging behavior of (£/L)?, we perform a fit on its finite-
size data. According to Eq. (8), at low temperatures with L
large enough, (£/L)* has the scaling (£/L)*> ~ (Mz)/<M,f>.
For o > 2, (M?), and (Mkz) share the same leading scaling
exponent (M?) ~ (M) ~ L™, but may have different correc-
tion terms. Therefore, (£/L) should converge to a constant
following a series of power-law decays. Thus (£/L)?> can be
fitted to

(/LY = ap+aiL™, (36)

where w is an unknown correction exponent and needs to be
determined by fitting. The fitting results are shown in Fig. 8
with the largest system size up to L = 4096. The linearity of
the data points suggests that (¢ /L)? indeed scales in the form
of Eq. (36). The finite extrapolated value indicates that (£ /L)?
converges to a finite constant in the thermodynamic limit, and

hence the system enters a QLRO phase at low temperatures
foro =2.1.

D. Revisiting the low-T properties of the crossover point ¢ = 2

The preceding sections have established the existence of
LRO for 0 < 2 and QLRO for o > 2 in the low-T' phase. To
gain deeper insights into the low-7 properties of the system
at the marginal point of o = 2, we investigate the second-
moment correlation length & as a function of o near o = 2.
We fix the temperature at 7 = 1.0, a value that is below
the critical temperature 7.(c = 2) = 1.3671(4). We begin by
analyzing the scaling form of & at o = 2. Section IV B has
clearly demonstrated the logarithmic scaling behavior of y:
xx ~ L?/In(L/Ly) at o = 2 in the low-T phase. Given the
definition (8) and considering the finite magnetization in the
low-T phase, the second-moment correlation length & should
obey a similar logarithmic scaling form:

(M?)

(M)

E~L ~ LIn(L/Ly)?.

TABLE II. Estimates of 7, for different parameters are provided. The data in the “Low-7" column combines the data from the previous
four temperatures, where data in the “ = 1” column for o = 1.75, 1.875 are discarded for their obvious deviation from other data, which is

caused by their proximity to the critical temperature.

o B =1 p=2 p=4 p=38 Low-T Theory
1.25 0.751(3) 0.754(4) 0.751(5) 0.743(7) 0.751(2) 0.75
1.75 0.237(6) 0.247(3) 0.253(3) 0.250(4) 0.250(2) 0.25
1.875 0.098(8) 0.121(8) 0.123(7) 0.121(9) 0.122(5) 0.125
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TABLE III. Fits of y; to Eq. (35) for o = 2.

IB Lmin ﬁl Ci ay XZ/DF
1.0 32 1.04(1) —0.86(6) 0.0213(8) 6.6/9
48 1.06(2) —-0.8(1) 0.023(1) 5.4/8
96 1 —1.06(1) 0.01918(7) 4.0/7
128 1 ~1.06(2) 0.01919(9) 4.0/6
2.0 48 0.99(2) —0.8(1) 0.0108(7) 3.5/8
64 0.98(3) —-0.8(1) 0.011(1) 3.5/7
64 1 —0.72(1) 0.01107(4) 3.6/8
96 1 —0.71(2) 0.01109(5) 3.5/7
4.0 32 1.03(2) —-0.5(1) 0.0063(4) 4.9/9
64 1.04(6) -0.4(3) 0.007(1) 4.6/7
96 1.13(9) 0.1(5) 0.008(2) 3.5/6
48 1 —-0.57(2) 0.00587(2) 54/9
64 1 —0.58(2) 0.00585(3) 4.9/8
8.0 48 1.10(7) ~0.13) 0.0039(7) 6.5/7
64 1.2(1) 0.3(5) 0.005(1) 5.5/6
32 1 —0.50(2) 0.00300(1) 10.1/9
48 1 ~0.53(3) 0.00299(2) 8.4/8

To explore the transition across o = 2, we analyze the behav-
ior of x; and & as a function of o.

Figures 9 and 10 presents a detailed finite-size scaling anal-
ysis of ;L2 In(L/L;) and (& /L)*/In(L/Ly) as a function of
o for several system sizes L. A key feature is the clear crossing
of curves at o = 2, signifying a change between LRO and
QLRO. To capture the behavior near o = 2, we propose a
refined scaling form for y; and &, incorporating logarithmic
corrections at o = 2 in the low-T phase T < T,. Specifically,
we conjecture that y; scales as

X = L*In(L/Ly)~" x; (6 In (L/Ly)), (37)
and & scales as

& =LIn(L/Lo)*€'(& In (L/L)), (38)

3000

2000

LQ/Xk

1000

1024 4096

FIG. 6. Demonstration of the logarithmic behavior for o = 2.
L?/y; is plotted in the semilogarithmic coordinate as a function of
the system size L for different temperatures at o = 2. The linearity of
data indicates logarithmic behavior: x; ~ L?/In(L/Ly) in the low-T
phase for the o = 2 case.

where & = o — 2 represents the deviation from o,; x; and &’
are universal scaling functions that govern the behavior near
o =2; Ly, Ly, and L, are constants determined via fitting. The
insets of Figs. 9 and 10 demonstrate the efficacy of the scaling
hypotheses by respectively showing a collapse of the scaled
xx and & data points onto single, universal curves. The data
collapse provides strong numerical support for conjectured
scaling forms and further confirms that o = 2 represents a
marginal point where the system undergoes a transition be-
tween the LRO and QLRO phases at low temperatures.

V. POWER-LAW DIVERGENCE OF CORRELATION
LENGTH AT HIGH TEMPERATURE

In this section, we focus on the physical properties of the
high-T phase as the system approaches the critical point at

ﬁ:l._a_.
2 —e—

0.9

oc=3

16 61 256
L

1024 4096

FIG. 7. Demonstration of QLRO in the low-T' phase for o = 3.
The squared magnetization, (M?), is plotted against L using double-
logarithmic coordinates. For both § = 1 and B = 2, the linearity of
the data points indicates a power-law relationship between (M?) and
L, which is the signature of QLRO.
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FIG. 8. Fitting results of Eq. (36) for 0 =2.1 at =1 and
B =2. The x axis is L™, with v = 0.16 for 8 =1 and 0.12 for
B = 2. The good agreement between the fitted line and the scatter
points demonstrates the quality of the fit, and the y intercept of the
line provides the finite value of (£/L)? in the thermodynamic limit,
suggesting the presence of QLRO.

B. from the disordered phase. Specifically, we investigate the
growth of the second-moment correlation length £ and sus-
ceptibility . The growth form of £ and x depends on the type
of the transition, providing a clearer indication of universality
than critical exponents and allowing one to identify the thresh-
old between SR and LR universality. The critical points . for
o = 1.875,2, 2.1, and 3 are determined through FSS analysis,
whose value can be found in Table IV; for the NN case,
previous numerical investigation gives S, = 1.11996(6) [53].

As the system approaches a BKT transition from
a disordered phase, £ and x diverge exponentially as
%exp(b/\/f) [54,55], where t = (T — T.)/T. is the reduced
temperature, and b is a nonuniversal constant. As shown in
Fig. 11(a), a semilogarithmic plot of & versus a + b/t is

0.028

10
xxL™2In(L/Ly) vs &In(L/Lq)

0.02 F

L2 In(L/ L)

0.012

FIG. 9. The semilogarithmic plot of xL~>In(L/L}) as a function
of o for several system sizes L = 64 to 4096, with y axis in logarith-
mic scale. The inset shows the data collapse of x;L ™2 In(L/Lj) vs
6 In(L/Ly), where 6 =0 — 2, Lj =2.89, and L, = 4.48.

10!
(£/L)*/I(L/Lo) vs &n(L/Ly)
20} %@
B
= 10°
~
~
~ 1.
=
a
~ (.
~
2

FIG. 10. The semilogarithmic plot of (£/L)?/In(L/Ly) as a
function of o for several system sizes L = 64 to 4096, with y
axis in logarithmic scale. The inset shows the data collapse of
(£/L)*/1n[L/Ly)] vs & In(L/L,), where 6 = o — 2, Ly = 0.75, and
L, =4.48.

presented for o = 2.1 (purple), 3 (red), and the NN case
(black), where the nonuniversal constant @ comes from the
amplitude of the scaling ~ exp(b/+/1), and the specific values
of a and b are provided in the corresponding caption.

For a given ¢ that is not so close to the critical point, the
growth of £ as a function of ¢ then reveals the thermodynamic
growth law of correlation length. However, when the system
enters the finite-size critical window, where & ~ L, the & curve
begins to bend to a plateau due to finite-size scaling behavior,
thus deviating from the thermodynamic growth law. Note that
this analysis is different from the FSS analysis. Here, one
first takes the L — oo limit for a given temperature 7 and
then takes the T — T, limit to examine the asymptotic growth
law of £. In contrast, the FSS analysis first takes the T — T,
limit for a given L, followed by the L — oo limit, studying
the scaling behavior within the finite-size critical window. As
shown in Fig. 11(a), the straight black line in the semilog
plot clearly demonstrates the exponential growth of & for
o > 2, the typical BKT scaling behavior. In the large- regime
[the bottom-left corner of Fig. 11(a)], where the system is

TABLE IV. Estimations of critical point 8. for various ¢ shown
in Fig. 1. Because of the normalization procedure in Eq. (3), when
o — —2, B. — 1/2, the critical point of XY model on the complete
graph; when 0 — o0, B, approaches the value of the NN case.

o ﬂl: (e ﬂ(‘
0.25 0.503(2) 2 0.7315(2)
0.45 0.5075(2) 2.1 0.753(2)
0.65 0.524(2) 22 0.783(2)
0.85 0.545(2) 2.5 0.835(2)
1 0.5654(1) 3 0.899(5)
1.25 0.599 615(6) 35 0.950(5)
1.5 0.639 36(1) 4 0.980(5)
1.75 0.683 80(7) 45 1.010(5)
1.875 0.707 37(7) 5 1.030(5)
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FIG. 11. Demonstration of the exponential growth of £ and cor-
responding FSS, indicating the BKT transition for o > 2. (a) The
semilogarithmic plot of & as a function of a + b/+/t for o = 2.1
(purple), 3 (red) and NN case (black), where t = (T — T..)/T, and
the nonuniversal constants are a = 0.69, —0.22, —1.20 and b = 0.6,
1.1, 1.7, respectively. (b) The semilogarithmic plot of the ratio £ /L
as a function of a + b/./t,, where t; = t[In(L/Ly)]* with the nonuni-
versal length scale simply set by Ly = 1. Here, the nonuniversal
constants are a = 0, 0.12, 0.25 and b = 0.6, 1.1, 1.7, respectively.

far from criticality, & slightly deviates from the exponential
growth. Moreover, in Fig. 11(b), we further plot the ratio § /L
versus b/\/t; = b/[t(In L/Ly)*]'/? to examine the FSS of the
exponential growth, where L is a nonuniversal length scale,
simply set as 1. The scaling field 7, = t[ln(L/Lo)]2 [56,57]
originates from the exponential divergence of the correlation
length near the BKT transition £ ~ L ~ exp(b/+/t). The data
points collapse onto a single curve, showing that for o > 2,
the phase transitions belong to the BKT universality class.
For o0 = 2.1, taking into account that it is so close to the
crossover point o = 2, it is somewhat surprising that its £ data
can collapse well onto the curve for o = 3 and NN.

On the other hand, near a second-order transition, & di-
verges algebraically as & ~¢~", with v as the correlation
length exponent, and x diverges algebraically as x ~¢77,
with y as the susceptibility exponent. Hence, by investigating
the growth of £ and x near ., we can readily reveal the type
of transition at different o, particularly the transition at ¢ = 2.

In Fig. 12(a), a semilogarithmic plot of a& versus b/+/t for
various o is presented. The nonuniversal constants a and b,
obtained through the fitting, enhance the overall readability of
plots without affecting the universal growth law. The specific
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FIG. 12. Deviation of the second-moment correlation length &
and susceptibility x growth at o = 2 from the BKT scaling. Panel
(a) shows a semilogarithmic plot of a£ as a function of b/+/t for
various L at o = 1.875 (green), 2 (blue), 2.1 (purple), 3 (red), and the
NN case (black), where the reduced temperature is t = (T — T,)/T,
anda=1,1,0.5,1.25,3.33and b =1, 1, 0.6, 1.1, 1.7, respectively.
Panel (b) shows a semilogarithmic plot of ax as a function of b//t
for various L at o = 1.875 (green), 2 (blue), 2.1 (purple), 3 (red),
and the NN case (black), where a = 1, 1, 4, 23.53, 66.67 and b = 1,
1, 1.05, 2, 3, respectively. For ¢ = 2.1, 3, and NN case, the black
solid line, which scales as ¢”/V7, serves as a guide to the eye for the
exponential growth of & and x, characterizing the BKT transition.
However, for o = 1.875 and 2, the dark-green and dark-blue curved
lines, scaling as =8 and t~2?? in panel (a) and 3% and =38 in
panel (b), serve as guides to the eye for the power-law growth of &
and x, indicating a second-order phase transition.

values of a and b are provided in the corresponding caption.
For 0 = 2.1 (purple), o = 3 (red), and the NN case (black),
the straight black line demonstrates that the correlation length
diverges exponentially & ~ exp(b/+/t), characterizing a typi-
cal BKT transition. For clarity, we exclude certain data points
in the finite-size critical window, which manifests as a plateau.
For o = 1.875 (green) and 2 (blue), when sufficiently far
from B, i.e., b/+/t is small, £ behaves seemingly like that
for 0 = 2.1, 3 and the NN case. However, near the critical
point, i.e., as b/+/t approaches infinity, the behavior of &
becomes increasingly different from the SR cases (o > 2) and
deviates from the exponential growth, suggesting a different
universality class. In fact, the growth of & for o = 1.875 and
2 can be approximately described by a power-law function
(the curved lines in dark green and dark blue), indicating a
second-order transition. In Fig. 12(b), a similar analysis is
applied to the susceptibility x. The plot shows ay versus b/+/t
on a semilogarithmic scale. For the BKT cases (o = 2.1, 3,
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FIG. 13. Growth of the second-moment correlation length & and
susceptibility x growth at various ¢ on a double-logarithmic scale.
Panel (a) shows a& as a function of b/t for various L at ¢ = 1.875
(green), 2 (blue), 2.1 (purple), 3 (red), and the NN case (black), where
the reduced temperature is t = (T — T;)/T.. Panel (b) shows ay as
a function of b?/t for various L at o = 1.875 (green), 2 (blue), 2.1
(purple), 3 (red), and the NN case (black). The values of a and b
are the same as those in Fig. 12. For 0 = 1.875 and 2, £ and y
asymptotically follow a power-law growth, indicating a second-order
phase transition. As a comparison, for ¢ = 2.1, 3, and NN cases, the
exponential growth of & and yx for a BKT transition can be observed
(the black curve).

and NN), x diverges exponentially, with the straight black
line guiding the eye. On the other hand, for o = 1.875 and
2, x follows a power-law growth near the critical point, with
the dark-blue and dark-green curved lines guiding the eye,
suggesting a second-order phase transition.

Figure 13 presents the log-log plot of a£ and ay versus
b?/t, where the x axis is the square of b/+/t. In Fig. 13(a),
for 0 = 1.875 and 2, the growth of & asymptotically follows
a linear relation as b?/t — oo (the straight dark-green and
dark-blue lines), consistent with the power-law growth be-
havior of a second-order transition. The deviation of & from
linearity and the discrepancy between the exponent estimated
from Fig. 13(a) and the fitting result in Table V are likely
due to the strong correction to scaling from the irrelevant
fields. Specifically, & ~ ¢~V g(u/t*/*), where u is some irrel-
evant field and y, < 0 is the corresponding scaling exponent.
Nevertheless, the growth behavior of & is already capable of
clearly revealing the type of phase transition for various o.
For the growth of yx in Fig. 13(b), the straight dark-green and
dark-blue lines illustrate a power-law behavior, as xy ~ ¢~ for
o = 1.875 and 2, again indicating a second-order transition.

TABLE V. Estimates of two exponents y, and 1 for nonclassical
regime. The results are obtained from the fitting: Eqgs. (45) and (46).
Some of the estimated values of 1 for LR Ising model by Luijten [6]
and Picco [10] are also included for comparison.

o Ve n n (Luijten) n (Picco)
1.25 0.987(4) 0.75(1)

1.5 0.86(3) 0.518(8)

1.75 0.60(4) 0.324(7) 0.286(24) 0.332(8)
1.875 0.48(4) 0.278(5)

2 0.37(4) 0.260(5) 0.266(16) 0.262(4)

The growth behavior of & for o = 2, 1.875 slightly de-
viates from a power law in Fig. 13(a), primarily because of
the strong correction from the irrelevant fields. To mitigate
such corrections, one needs to observe a larger £ closer to
the critical point. However, brute-force simulations at larger
systems are numerically challenging and impractical. Instead,
one can exploit the FSS behavior of £ and extrapolate & to
obtain its thermodynamic value. The extrapolation method has
been successfully employed to the classical 2D Heisenberg
model [45,58-60]. This method is based on the FSS ansatz:

§B.sL) _ L (§B.L). I
m_FE< L ’S>+0(§ , L™, (39)

where s is a fixed rescaling factor, typically set at 2 for the
convenience of MC simulations; F; is a universal function
of £/L, depending on the rescaling factor s; the second term
O(E~“, L™?) contains further correction terms, which van-
ishes when & and L become large enough. In the ansatz (39),
F; (x) typically takes the form

F(x)=14ae " +ame ™+ +ae"*,  (40)

with n usually no more than 12 [45]. The correction term
O(&7“, L™?) is negligible in the 2D Heisenberg case, which
is also the case for the 2D LRXY model at ¢ = 3. How-
ever, for o = 2, because of large finite-size correction, the
O(£~“, L™*) term in ansatz (39) cannot be ignored. The fitting
equation for ansatz (39) is thus adjusted to

(B, sL)

=l4+ae " +ae + - +ae™ +bL7.
§(B, L)

(41)

The fitting results for o = 2 and 3 are presented in Tables VIII
and IX in the Appendix. With the concrete form of Eq. (39),
one can extrapolate the truncated £ to its thermodynamic
value. See Ref. [45] for details of the method. The final extrap-
olation results, along with original data in Figs. 12 and 13, are
shown in Fig. 14. The extrapolated & reveals the characteristic
signatures of the phase transition more clearly. In Fig. 14(a),
& is plotted vs 1/t on a double-log scale. The linear behav-
ior of the extrapolated data for o = 2 demonstrates a clear
power-law divergence of & with v & 2.24, characteristic of a
second-order phase transition. In Fig. 14(b), & is plotted vs
1/4/t on a semilog scale, and the linearity of the extrapolated
data for o = 3 demonstrates the exponential divergence of
&, consistent with a BKT phase transition. Moreover, the
extrapolated correlation lengths agree well with the original
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FIG. 14. The extrapolation results of & along with the original data for ¢ = 2, 3. The blue dots represent the original data obtained directly
from the simulation without extrapolation, as already shown in Figs. 12 and 13; the red dots represent the extrapolated value. Panel (a) is plotted
in double-log coordinates. The distinct linearity of the extrapolated data for ¢ = 2 demonstrates the power-law divergence of £: & ~ =" with
v & 2.24. Such power-law divergence of £ is the signature of a second-order phase transition. For comparison, in panel (b), £ is plotted versus
1/+/t in a semilog coordinate. The linearity of the extrapolated data for ¢ = 3 demonstrates the exponential divergence of &: & ~ exp(b/+/1),

which is the signature of a BKT phase transition.

simulation data for both the o = 2 and 3 cases, affirming the
robustness and reliability of our extrapolation procedure.

In all, our analysis of the growth behavior of & and yx
strongly suggests that the system undergoes a second-order
transition for o < 2 and a BKT transition for o > 2; hence,
the threshold between SR and LR universality is at o, = 2.

VI. CRITICAL PROPERTIES

In the previous sections, we have studied the low-7" and
high-T properties of the system for o < 2. In this section,
we focus on the system’s critical properties for o < 2. The
fitting of the critical point and critical exponent is elaborated
in Secs. VI A and VIB, respectively. Then, to determine the
reliability of the estimate of 5, the correlation function is
also studied in Sec. VIC. Finally, we take a brief look at
the properties of the specific-heat-like quantity in Sec. VID,
which provides additional hints of the crossover by showing
distinct behaviors in the LR and SR universality.

A. The fit of critical point

In this section, we focus on determining the critical temper-
ature for various values of 0. For o < 2, a second-order phase
transition happens from a disordered phase to a ferromagnetic
phase, where the dimensionless ratio curves, such as Q,, and
& /L, for different system sizes, should intersect at the critical
point. Figure 15 presents £ /L as a function of inverse temper-
ature § for system sizes ranging from L = 64 to L = 4096,
and for o = 1.75, 1.875, and 2.0. Unlike Fig. 2, which covers
a broader range, this figure zooms in on a small regime of
to observe the crossing behavior of &£ /L for different system
sizes. However, Fig. 15 shows that the crossing points for
different system sizes do not intersect at a single value of
B. Instead, these points shift toward higher values of 8 as
the system size increases, a phenomenon attributed to the
corrections from the boundary effect in finite-size systems and
the presence of irrelevant operators. The distance between the

crossing points decreases as the system size grows, and with
larger system sizes, the crossing points eventually converge at
a single value of 8, marking the critical point. To confirm this
behavior and accurately determine the critical point, a finite-
size analysis is performed at the crossing point 8; between
system sizes of L and L/2. The final crossing point, or critical
inverse temperature S, follows the form below:

Br =B +alL """ = B. +aL ™™, (42)

where w and y, refer to the leading irrelevant exponent and the
thermal scaling exponent, respectively. For convenience, S} is
fitted to the following equation:

Br = B +aL™®,

where w represents the sum of both exponents in Eq. (42). Fig-
ure 16 illustrates the fitting results, with the x axis representing
L~® and the y axis showing the corresponding values of S;.
In each case, the fitting lines exhibit finite intercepts on the
y axis, highlighted by red stripes. This confirms that the £ /L
curves finally intersect at a single critical point as the system
size increases. The intercepts provide an estimate of the crit-
ical temperature .. For further accuracy, the dimensionless
ratios, such as £ /L and Q,,, are also fitted with respect to L and
€ = B — B, near the critical point to refine the estimate of the
critical point. Considering the universal part of dimensionless
ratio Q as in Eqgs. (17) and (18). The Taylor expansion below
provides a fitting equation of Q:

(43)

Qe u, L) =ap+ ) _ai(eL”) +biL™ + bl ™

i=1

+ el ™ 4 e’ L, (44)

where the value of m depends on the specific fitting pro-
cess and is typically taken as 2 or 3; the L™ term comes
from the irrelevant field #, and w = —y,. For the fit of Q,
when o < 1.5, Q,, is more suitable for fitting, whereas when
1.5 < o < 2, &/L provides a better fit. By combining the two
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FIG. 15. The enlarged view of the second-moment correlation length ratio, £ /L, as a function of inverse temperature 8 for various system
sizes at o: (a) 1.75, (b) 1.875, and (c) 2. Clear crossing behavior can be observed in all the cases, despite the shift of the crossing point due to

the finite-size effect.

quantities, relatively accurate estimates of critical points can
be obtained, and they are consistent with those derived from
the fit of B.. The final estimated values of B, are presented
in Table IV (note that, except for o = 1.25, 1.5, 1.75, 1.875,
and 2, the critical points under other parameters are only
determined with much less precision since they are mainly
used for drawing the phase diagram in Fig. 1).

When o > 2, the system undergoes a BKT transition,
where the susceptibility x is known to follow the scaling
behavior: x ~ L"*(nL + C))V/® at the critical point [61]
where C| is a nonuniversal constant and needs to be obtained
through fitting. Therefore, plotting xL77*(nL +Cy)~/3 as
a function of temperature, the curves of different system sizes
intersect at the critical point.

B. The fit of critical exponents

According to the scaling relationship, only two critical
exponents are independent, and here we mainly focus on
n and the thermal scaling exponent y, = 1/v, with v the
correlation-length exponent. In Sak’s criterion, n = max(2 —
o, nsr) where nsg = 1/4 for 2D XY model, so estimating the
value of 7 is another way to determine whether o, equals 1.75
or 2. By fitting the susceptibility x and the scaled covariance
K, the values of n and y, can be numerically estimated. At
the critical point, considering the finite-size scaling Egs. (13)

and (16), x and K are respectively fitted to

X =L*"a+bL™) +c, (45)

and

K =LY (a+ bL™®) + cL"2, (46)

where bL~® refers to the correction terms and ¢ derives from
the analytic part of free energy. During the fitting process,
various values of w are tested. It is observed that when w
is excessively large or small, the data cannot be adequately
fitted. However, when w falls within a certain range, an appro-
priate fit yields reliable estimates for exponents. The details
and results of the fitting are shown in Tables VI, VII, and V,
respectively. An interesting point is that our fitted n values are
consistent with previous results for LR Ising model [6,10].
Figures 17 and 18 visually show the reliability of the fitting.
To be specific, when taking the estimated value of n and y;,
according to the fitting, xL""> — bL™® and KL — bL™
should converge to a nonzero value as L increases; otherwise
they will either diverge or reduce to zero. It can be seen that in
both figures, the curves corresponding to the estimated values
of exponents converge to a plateau, indicating the reliability of
the fitting results. Figure 19 presents our numerical estimates
of critical exponents at different o. Figure 19(a) displays
our estimates for n across different o values, alongside the
estimates by Picco [10] and Luijten [6].

0.685 0.708
0.73 + B, = 0.73155(10)
3, = 0.63375(6)
0.725
~ 0.68 0.701
0.72}+
0.715 ¥
- 0,604 (b) o =1.875 (c)o=2
o 0.05 01777 0.02 004 006 0.08 0.1 0.06 0.12
L*U.SG L*U,Sﬁl L70.75

FIG. 16. The extrapolation of £ /L curves’ crossing point B, of different system sizes. The x axis represents the correction term L=: 708

in panel (a), L=03

in panel (b), and L~%7 in panel (c). The y axis denotes the inverse temperature 8 at which the correlation length ratios for

two consecutive system sizes intersect. The red line indicates the extrapolated value of 8 as the system size approaches infinity.
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TABLE VI. Fitting detail of x to Eq. (45) for various o.

o Loin n c a b w x2/DF
1.25 8 0.742(3) —0.92(6) 0.64(1) 1.04(3) 0.4 8.5/10
16 0.742(4) —1.0(2) 0.63(2) 1.05(5) 8.5/9
8 0.758(2) —1.3909) 0.74(1) 1.18(4) 0.5 11.8/10
16 0.755(3) —1.7(3) 0.73(2) 1.24(7) 10.2/9
1.5 32 0.511(4) 3.0(7) 0.50(2) 0.51(5) 0.4 9.8/8
48 0.517(5) 5(2) 0.52(3) 0.42(8) 7.6/7
16 0.525(1) —-1.2(3) 0.568(6) 1.22(5) 0.7 10.0/9
32 0.526(2) —0.2(10) 0.575(9) 1.1(1) 8.7/8
1.75 16 0.3169(7) 1.6(1) 0.363(2) 0.535(6) 0.4 7.0/11
32 0.3164(9) 1.3(4) 0.362(3) 0.541(9) 6.6/10
32 0.3305(7) —3.5(6) 0.422(2) 0.91(2) 0.6 10.1/10
48 0.3298(8) —=5(1) 0.419(3) 0.94(3) 8.4/9
1.875 48 0.273(1) 3.8(7) 0.386(4) 0.41(1) 0.35 9.7/10
64 0.274(1) 5(1) 0.388(5) 0.40(1) 8.8/9
16 0.2814(5) 1.0(1) 0.425(2) 0.491(6) 0.45 11.7/12
32 0.2812(7) 0.94) 0.424(2) 0.494(10) 11.6/11
2 48 0.2559(7) 5.2(6) 0.465(3) 0.299(9) 0.35 10.5/10
64 0.2562(8) 6(1) 0.466(4) 0.29(1) 10.0/9
32 0.2645(2) —-0.6(3) 0.5131(9) 0.555(8) 0.6 5.6/11
48 0.2643(3) —1.2(6) 0.512(1) 0.56(1) 5.0/10

Despite the difference in models (Luijten and Picco studied
the 2D LR Ising model, whereas we are studying the 2D LR
XY model), our results are consistent with Picco’s results,
which does not agree with Sak’s prediction. In our results, 1
interpolates smoothly between n =2 — o for o near 1 and
n =nsg = 1/4 for o > 2. For 0 < 2, n remains significantly
higher than 1/4, indicating the phase transition does not
belong to the short-range universality class. For o = 2, the

estimated value of 7 still slightly exceeds 1/4, which could be
attributed to some logarithmic corrections in the behavior of
X at the marginal point o = 2. Figure 19(b) demonstrates our
numerical estimates of y,, as well as the € expansion results
up to the second order [2]. It can be seen that our numer-
ical data starts to deviate from the € expansion result from
o =~ 1.5. This should also apply to the value of 5 according to
the Fig. 19(a). Therefore, the € expansion result near o = 1,

TABLE VII. Fitting detail of K to Eq. (46) for various o.

(e} Liin Vi a b w Xz/DF
1.25 8 0.991(2) 0.444(5) 0.067(8) 0.4 8.2/11
16 0.989(2) 0.453(7) 0.05(1) 6.2/10
8 0.9833(6) 0.473(1) 0.56(7) 2 8.4/11
16 0.9839(7) 0.472(2) 0.9(3) 7.4/10
1.5 8 0.830(2) 1.60(3) —1.21(4) 0.1 9.3/10
16 0.826(3) 1.67(5) —1.29(6) 7.4/9
16 0.886(2) 0.69(1) —0.43(3) 0.5 10.8/9
32 0.883(3) 0.71(2) —0.49(6) 9.3/8
175 32 0.558(4) 5.12) ~5.1(2) 0.1 11.8/11
48 0.553(5) 5.4(3) —-5.5(3) 9.5/10
48 0.640(3) 1.48(3) —-3.3(2) 0.6 9.4/10
64 0.640(4) 1.48(4) —-3.3(3) 9.4/9
1.875 16 0.441(2) 6.9(1) ~7.1(1) 0.1 10.8/12
32 0.439(3) 7.0(2) —-7.3(3) 10.2/11
48 0.518(3) 2.04(4) —-3.9(2) 0.5 8.6/10
64 0.518(4) 2.04(6) ~3.93) 8.6/9
2 32 0.337(3) 8.9(3) ~9.6(3) 0.1 9.7/11
48 0.332(4) 9.34) ~102(5) 7.6/10
64 0.416(4) 2.53(7) —-5.6(3) 0.5 6.9/9
128 0.411(6) 2.6(1) —6.3(8) 5.4/7
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FIG. 17. Demonstration of the reliability of the fitting of x. The semilogarithmic plots of L'~ — bL= versus L for o = 1.75, 1.875,
and 2 are shown (where w = 0.48, 0.42, 0.5, respectively). The red dots represent 7 at the fitted center value 7., while the green and blue
ones represent 1 deviating from the center value by positive and negative three standard deviations, respectively. The red square approaches a
horizontal line as L — oo, while others show evident growing and decreasing trend, indicating the precise estimate for » that we obtain.

n =2 — o should not always hold along the whole non-
classical regime, especially for o > 1.5 cases. However, Sak
criterion simply adopted the relation for o < 1.75, which we
consider unreliable.

C. Subleading magnetic exponents

As mentioned before, Ref. [7] suggests that Picco might
underestimate the finite-size correction, which finally caused
the overestimate of 1. By studying the short-distance cor-
rection to the correlation function, they proposed that when
properly considering the finite-size correction term, n would
revert to 0.25 at o = 1.75, consistent with Sak’s criterion.
In this section, following the same routine in Ref. [7], we
also study the correlation function at the critical point for
the 2D LR XY model. In particular, we focus on the case of
o = 1.75, where 7 is estimated to be 0.324(7), and similar
procedures can apply to other . Our estimated value of 7 is
taken to be 0.32, with the corresponding correction exponent
w in Eq. (45) being 0.45. By carefully fitting the correlation
function, we identify a subleading power-law correction likely
arising from the subleading magnetic exponent y,, of the

transition [40]. The fitting results are compatible with our
estimates of 7, thus validating our previous analysis.

The two-point correlation function is defined as g(r) =
(S(0) - S(r)), and at the critical point, it asymptotically decays
as a power of the separation, g(r) o< r—7 as r — oo. However,
one would expect additional corrections to g(r) that decay
faster than the leading term. These corrections are, in general,
difficult to observe in SR models. It is argued in Ref. [7] that
g(r) in the LR Ising model at the criticality is controlled by
two power-law decays, as g(r) = r~"(a + br=%). The term r—°
causes faster decay in short distances and reduces to zero at
large r when the correlation function gradually returns to the
single power scaling, i.e., »~". Such correction, if not properly
considered, could lead to an unreliable estimation of n [7].

We measure the correlation function in horizontal and ver-
tical axes:

1
o 2 (S Sivnj) + (Sij - Sije)) (4

¥ i) elNy)

g(r)=

where the summation only goes through N; randomly chosen
sites instead of the entirety, and Ny = 100 in our practice. In
this way, the complexity of this measurement remains O(N)

KL% —bL™v

16 64 256 1024 400 16 64

956 1024 4096 16 64 256 1024 409
L

FIG. 18. Demonstration of the reliability of the fitting of K. The semilogarithmic plots of KL™ — bL™ versus L for o = 1.75, 1.875,
and 2 are shown (where w = 0.25, 0.25, 0.2, respectively). The red dots represent y, at the fitted center value, while the blue and green ones
represent y, deviating from the center value by positive and negative three standard deviations, respectively. The red square approaches a
horizontal line as L — oo, while others show evident growing and decreasing trend, indicating the precise estimate for y, that we obtain (note
that y, = 1/v). It is worth noting that, compared with yx, since K is defined by the ratio of two vanishing covariance and variance in Eq. (10),
it exhibits larger errors. This is particularly evident for L = 8192, where the difficulty in simulating longer Markov chain lengths results in
significant errors for K under this parameter. Therefore, the data point for L = 8192 is not included in the fitting of K.
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FIG. 19. The value of critical exponent at various o. (a) The
red dots denote the estimates of 1 in this work. Picco and Luijten’s
results are also contained [6,10], respectively denoted by blue and
green dots. Although the model they studied is the Ising model, our
estimated values of n are consistent with their results. The dotted
lines correspond to Sak’s prediction: n = max(2 — o, 1/4). Obvi-
ously, our results deviate from Sak’s prediction, suggesting that for
1.75 < 0 < 2, the short-range behavior is not recovered. (b) The
dotted line represents the results from second-order € expansion [2]
(note that y, = 1/v). The red dots denote the estimates of y, in this
work. Note that for o > 2, the LR system undergoes a BKT phase
transition instead of a second-order one, with corresponding y, = 0.
Therefore, there will be a jump for the value of y, at o = 2. This
jump is reasonable considering the distinct different type of phase
transition forc =2 and o > 2.

instead of O(N?), which allows us to measure the system
with a larger size and simulate more samples. The cost is the
slightly higher uncertainty in the measurement, but this can be
compensated by involving more samples.

The inset of the left panel in Fig. 20 demonstrates the
correlation function with various system size L where the
double-log scale is used to observe the power-law behavior.
The flattening tails of the correlation functions are due to the
finite-size effect. To diminish such effect for a better obser-
vation of the power-law behavior, we follow the treatment of
Ref. [7] to choose the x axis as sin(wwr/L)L/m in the main
figure. It does not affect the correlation function in short
distances since sin(wr/L)L/m ~ (wr/L)L/m = r. Moreover,
as can be seen in the main figure, it drastically reduces the
boundary effect. In the main figure, g(r) exhibits a fast decay
in the short distance and then decays slowly as r increases,
which suggests an additional correction to the correlation
function. We then perform a detailed fit to the correlation
function of the largest system size L = 4096 with n fixed

at 0.32:
¢(r) =¥ a+br'), (48)

where v’ = sin(zrr/L)L/7. We use data ranging from r = 1
to 600 for fitting, minimizing the impact of boundary effects.
The fit results in a corresponding § value of 0.42. The right
panel in Fig. 20 visually shows the quality of fitting, where the
x and y axis are respectively 7'~ and g(r)r'", and thus the data
points should approximately form a straight line according
to Eq. (48). As shown in the figure, the data points fit well
with a straight line and are only slightly flattened at large
distances due to the boundary effect. Therefore, the fitting of
the correlation function is compatible with n = 0.32.

We also demonstrate that the correction to correlation has
been properly included in the fitting of x. It is argued in
Ref. [7] that Picco did not sufficiently account for the finite-
size corrections deriving from the second term in the double
power of the correlation function, leading to an overestimation
of . Hence, we compare the value of correction exponent
considered in the fitting of x using Eq. (45), and of the second
exponent § in Eq. (48). For n = 0.32, the corresponding w
in the fit of Eq. (45) is approximately 0.45, while the fit of
Eq. (48) gives a 6 of 0.42. Since these values are very close,
we believe that the correction term L™ in Eq. (45) has al-
ready accounted for the subleading term '~ of the correlation
function. Figure 21 plots x /L>7" as a function of L™ with
n = 0.32 and § = 0.42, where the data points asymptotically
follows a linear behavior. This suggests that y indeed scales
as ~L>7"(a + bL™%) and our previous estimate of 1 by fitting
X is reliable.

The additional power-law correction to g(r) should origi-
nate from a subleading relevant magnetic scaling field. In the
context of RG, the free-energy density depends on not only
the leading thermal and magnetic scaling fieldst| =¢,h) = h
but rather a full set of scaling fields. Each scaling field is
associated with a particular eigenvalue of the RG transfor-
mation. In particular, the subleading thermal and magnetic
scaling fields #, and h, correspond to the subleading eigen-
values in the even sector and odd sector, respectively. The
contributions of these subleading exponents are very difficult
to observe explicitly from numerical simulations because they
either decay very fast or have very small, even zero amplitude.
For instance, for the NN Ising model, one has y,» = —4/3
and y,» = 13/24 ~ 0.542 [62]. The subleading thermal field
1, is irrelevant, whose contribution to FSS decays quickly. As
for the subleading magnetic field 4, despite being relevant,
it is commonly believed to be redundant [63,64]. Recently,
the exponent y, » has been observed in the Fortuin-Kasteleyn
geometric representation of the Ising model [65].

Taking into account the dependence on the additional
magnetic scaling field &,, the singular part of free-energy
density for a finite system near criticality scales as f ~
L™ f(t L, by L%, ho L2, ), where y,.1 = i, a1 = Vi,
and y,, are the corresponding scaling exponents. Conse-
quently, at critical point ¢t = 0, the correlation function g(r),
acquires additional power-law terms as g(r) ~ gor®—2¢ 4
g tne=2d 4 oo p2m2=2d [40]. From our fitting, the anoma-
lous dimension of the subleading power-law decay is
n' =n+ 8§ = 0.74. Therefore, if this exponent is from the
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FIG. 20. (left) The correlation function g(r) for systems of different sizes is plotted for o = 1.75. Both the main figure and inset are
shown in double-logarithmic coordinates for convenient observation of the power-law behavior. In the inset, with the x axis representing
r, the correlation function curves exhibit a strong boundary effect, i.e., a noticeable tendency to bend upward as r approaches L/2. In the
main figure, the x axis is replaced by sin(rr/L)L /7 to reduce this boundary effect. Furthermore, in this representation, the behavior of the
correlation function at short distances remains unaffected. (right) Rescaled correlation function g(r)r"” versus ¥~ for L = 4096, with n = 0.32
and § = 0.42. The red line represents the fitted line. This figure visually demonstrates the contribution of the subleading magnetic exponent to

g(r) (discussed in the text).

prit3na=2d term one has Yha=2—(n"—n/2)~ 1.42;if it
is from r2%2724_ then yj,, =2 — /2 ~ 1.63. Either case is
possible, although, from a symmetry consideration, we be-
lieve the latter case is more likely. Nonetheless, one could
conclude that the correction to g(r) is most likely due to yy 5.

We are glad to observe the contribution of the subleading
magnetic field at criticality in the LR XY model, which is
difficult to identify numerically in previous studies of SR
cases. In our opinion, this strong correction to g(r) is another
piece of evidence that the system is not in the SR universality
class at o = 1.75, since the two cases do not have the same
subleading magnetic exponent. Note that the double power

0.7
oc=1.75
g8_.- "’/./
i 0.5} LB B-
_EE"E.E
/’@#
03 0.1 0.2 0.3 0.4
L—OAQ

FIG. 21. The plot of x /L>7" versus L™ for o = 1.75, where n =
0.32 and the corresponding § = 0.42, obtained from the fitting of
Eq. (48). As the system size L — o0, the red dots approach a straight
line, indicating the scaling behavior: y ~ L>™"(a + bL™?) with n =
0.32 and § = 0.42. This shows the consistency between the fitting of
x and g(r).

correlation function observed in the LR Ising model could also
be attributed to the contribution of yj, », suggesting a different
universality class with the SR one at o = 1.75.

D. Properties of the specific-heat-like quantity

As a supplemental indication for the crossover from SR
universality to LR universality, the specific heat C exhibits
somewhat different behaviors in the two regimes. In the SR
regime, the specific heat C exhibits a smooth and broad peak,
which is a hallmark of the BKT transition. Conversely, as
the system approaches a second-order phase transition, the
singular part of C scales ~|¢t|~%, where ¢ is the reduced tem-
perature and « is the specific-heat critical exponent. When
o > 0, the specific heat diverges at the critical temperature
T.. However, for o < 0, C remains finite at 7. despite the
presence of critical singularities. In such cases, the specific
heat typically develops a sharp peak or even a nonanalytic
kink at the transition point, which can serve as a hint of a
second-order phase transition.

Directly measuring the full energy density and specific heat
for long-range interacting systems is computationally expen-
sive. Hence, we compute the energy of nearest neighbors for
simplicity, defined as

£ = L_2 ZS, . Sj,
(ij)

where the summation is over all NN pairs. This energy-like
quantity shares the same critical scaling form as the total
energy density, as discussed in the previous Sec. II D. Thus, it
is natural to define a specific-heat-like quantity that possesses
the identical scaling form of the specific heat,

Cnn = BLA((6%) — (e)), (50)

In Fig. 22, we plot Cnn versus T for o = 1.25, 1.75, 2,
and 3. For 0 = 3, Cyn exhibits a smooth and broad peak

(49)
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FIG. 22. The plot of Cyy versus T is shown for (a) o = 1.25, (b) 0 = 1.75, (¢) 0 = 2, and (d) 0 = 3. The dashed vertical lines indicate
the transition points for various ¢ values. For o < 2, finite yet sharp peaks are observed at the critical points, consistent with our prediction of
second-order phase transitions. In contrast, the smooth and broad peak for o = 3 is the typical behavior of a BKT transition.

slightly above the transition temperature 7, which is a typical
feature of the BKT transition. In contrast, for o = 1.25, 1.75,
2, finite yet sharp peaks are clearly observed near T;.. As the
o decreases, the peak becomes sharper and more asymmet-
ric, indicating nonanalytic behavior in the free energy. This
observation is consistent with our analysis of critical expo-
nents. For a system below its upper critical dimension, the
specific-heat critical exponent « is related to the correlation
length exponent v via the hyperscaling relation o = 2 — dv.
Table V shows that y, < 1 for o = 1.25, 1.75, 2, which im-
plies 1/y; = v > 1 and « < 0. Therefore, at these o values,
the specific heats develop cusps at the critical points.

Moreover, since much stronger evidence has already been
provided from the low-T properties and the power-law diver-
gence of £ as the critical point is approached from the high-T'
side, a comprehensive analysis of Cny is beyond the scope of
this work. We note that, even though Cny alone does not pro-
vide definitive evidence for locating the crossover point o, it
offers valuable supplementary insight. The distinct behaviors
observed in the 0 < 2 and o > 2 regimes are consistent with
our previous analysis and provide additional support for the
existence of a crossover at o = 2.

VII. CONCLUSION

In this study, we provide a comprehensive understand-
ing of the two-dimensional long-range (LR) XY model with
algebraically decaying interactions. We perform large-scale
Monte Carlo simulations to study the low-T', high-T, and
critical properties of the model at various o. Our results
provide compelling evidence that the threshold between long-
range and short-range universality lies at o, = 2, in contrast
with Sak’s scenario [66,67] and previous theoretical predic-
tions [20,21]. The main findings are summarized below:

(1) For o < 2, the system is shown to exhibit long-range
order and Goldstone mode excitations in the low-7" phase,
while for o > 2, the system exhibits quasi-long-range order
as in the NN case.

(2) We reveal the distinct growth behavior of the correla-
tion length £ in the high-T phase as the system approaches
T.. For 0 < 2, the correlation length follows a power-law
divergence, the signature of a second-order transition; for
o > 2, the typical exponential growth of the BKT transition
is observed.

(3) The critical points and critical exponents of the model
in the regime 1 < o < 2 are determined. The estimates of y,
and 7 start to deviate from the e-expansion result from ap-
proximately o = 1.50, and the deviation becomes bigger as o
further increases. This strongly suggests that the e-expansion
results, like n = 2 — o, are perturbative and should not be re-
garded as quantitatively true, particularly when o approaches
2. Moreover, our estimated values of critical exponents show
distinct difference foroc < 2 and o > 2.

Another important observation from our study is the clear
demonstration of an LRO phase at o = 2, which is in con-
trast with the theoretical scenario proposed in Ref. [18]. In
that work, the author employed the Bogoliubov inequality
in combination with a reductio ad absurdum argument, stat-
ing that if [, 1/E (k)dk = +o00, where E(k) =Y, J(r)[1 —
exp(ir - k)], then the magnetization must vanish in the ther-
modynamic limit, i.e., lim ¢ (S*) = O for any finite 7. This
condition implies that 2D LR Heisenberg and XY models with
algebraic decaying coupling cannot have finite-temperature
spontaneous magnetization for o > 2. However, we have pre-
sented a series of strong numerical evidence that the marginal
case 0 =2 does indeed support an LRO phase. It is also
worth emphasizing that the original Mermin-Wagner theorem
excluded the spontaneous breaking of continuous symmetry

TABLE VIII. Specific values of parameters obtained from the fit of Eq. (40) for n = 9 and different (Lyn1, Linin2)-

Luin ai(x10°) a(x10°) ay(x10?) ay(x10) as(x10%) b w x2/DF

(128, 256) 2.22(18) —8.2(49) 2.83(51) —1.30(23) 1.63(36) 1.44(13) 0.538(19) 191.1/93
(128, 512) 2.24(18) —12.2(48) 3.31(49) —1.5121) 1.96(33) 1.37(10) 0.514(16) 91.6/71
(256, 256) 2.06(19) —2.7(51) 2.15(55) —0.97(25) 1.10(39) 1.12(15) 0.494(25) 148.3/80
(256, 512) 2.14(17) —7.4(47) 2.70(48) —1.2221) 1.49(33) 1.30(16) 0.505(23) 55.9/58
(512, 256) 2.07(20) —3.4(58) 2.20(63) —0.98(29) 1.09(47) 1.01(15) 0.476(27) 141.6/73
(512,512) 2.11(20) —6.4(55) 2.57(59) —~1.16(27) 1.39(42) 1.23(24) 0.496(34) 54.9/51
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TABLE IX. Specific values of parameters obtained from the fit of Eq. (40) for n = 9 and different (Liin1, Lmin2)-

Lmin a1(><100) a2(><10') a3(><103) a4(><104) a5(><105) a5(><105) d5(X105) XZ/DF

(64, 256) 2.14(33) —5.3(20) 1.57(44) —1.79(47) 1.07(26) —3.17(71) 3.64(77) 113.2/50
(64, 512) 2.26(27) —6.1(16) 1.78(37) —2.03(40) 1.20(22) —3.49(60) 3.94(66) 68.1/46
(128, 256) 1.66(35) —2.3(22) 0.90(48) —1.07(52) 0.67(28) —2.11(78) 2.53(84) 79.3/41
(128, 512) 1.82(24) —3.5(15) 1.19(34) —1.40(36) 0.86(20) —2.62(55) 3.05(60) 33.0/37
(256, 256) 1.62(55) —1.7(32) 0.69(67) —0.80(69) 0.51(37) —1.64(99) 2.0(10) 63.6/29
(256, 512) 1.85(33) —3.3(19) 1.06(41) —1.21(42) 0.74(23) —2.25(61) 2.64(64) 19.1/25

when the second moment of the interaction is finite, i.e.,
Y. r2J(r) < oo [15]. For the interaction J(r) o< 1/r**% in 2D,
this condition fails at ¢ = 2, where the summation diverges
logarithmically. In any case, the discrepancy between our nu-
merical results and existing theoretical arguments underscores
that the nature of the marginal case at 0 = 2 remains an
open and subtle question, deserving further theoretical and
numerical investigation.

Finally, as a brief supplement, except for the LR XY
system, we have also carried out large-scale simulations for
a series of other long-range interacting systems, including
the simple random walk, self-avoiding random walk, Ising,
Heisenberg, and percolation models. In these works, universal
dimensionless ratios and critical exponents are determined
with high precision along the critical line, and low-T" prop-
erties are explored from a graph perspective, for which some
rigorous mathematical results for simple random walks can
be adopted. All these analyses, which will be published else-
where, strongly suggest that o, = 2 is the crossover value
between the short-range and nonclassical regimes, and the
values of critical exponents and dimensionless ratios, as a
function of o, can exhibit a discontinuity at o,.
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APPENDIX: EXTRAPOLATION DETAILS

As mentioned in the main text, using the FSS ansatz (39),
we extrapolate the correlation length £ to its thermodynamic-
limit value. For 0 =2 and 3, the ansatz (39) is fitted to
Egs. (40) and (41), respectively. To further account for the
finite-size correction, we gradually increase the minimum
system size Ly, included in the fitting. It is found that,
for both cases, finite-size corrections are more pronounced
in the range £/L € (0,0.35) U (0.65, 1) than in other inter-
vals. Therefore, two different minimum system sizes Ly
and Ly, are selected for two separate intervals, namely,
the range £ /L € (0.35,0.65) and £ /L € (0, 0.35) U (0.65, 1),
respectively, with Ly < Liinz- Fitting results with different
(Lminis Lmin2) for 0 =2 and 3 are presented in Tables VIII
and IX respectively. The extrapolation results in Fig. 14 use
the optimal fit with (L = 256, Lininp = 512) for o = 2 and
(Lmin1 = 128, Liinp = 512) for o = 3. Further extrapolation
details can be found in Ref. [45].
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