图¶
图(graph)是一种非线性数据结构,由顶点(vertex)和边(edge)组成。我们可以将图 $G$ 抽象地表示为一组顶点 $V$ 和一组边 $E$ 的集合。以下示例展示了一个包含 5 个顶点和 7 条边的图。
$$ \begin{aligned} V & = { 1, 2, 3, 4, 5 } \newline E & = { (1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,5) } \newline G & = { V, E } \newline \end{aligned} $$
如果将顶点看作节点,将边看作连接各个节点的引用(指针),我们就可以将图看作一种从链表拓展而来的数据结构。如下图所示,相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,因而更为复杂。
图的常见类型与术语¶
根据边是否具有方向,可分为无向图(undirected graph)和有向图(directed graph),如下图所示。
- 在无向图中,边表示两顶点之间的“双向”连接关系,例如微信或 QQ 中的“好友关系”。
- 在有向图中,边具有方向性,即 $A \rightarrow B$ 和 $A \leftarrow B$ 两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系。
根据所有顶点是否连通,可分为连通图(connected graph)和非连通图(disconnected graph),如下图所示。
- 对于连通图,从某个顶点出发,可以到达其余任意顶点。
- 对于非连通图,从某个顶点出发,至少有一个顶点无法到达。
我们还可以为边添加“权重”变量,从而得到如下图所示的有权图(weighted graph)。例如在《王者荣耀》等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。
图数据结构包含以下常用术语。
- 邻接(adjacency):当两顶点之间存在边相连时,称这两顶点“邻接”。在上图中,顶点 1 的邻接顶点为顶点 2、3、5。
- 路径(path):从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在上图中,边序列 1-5-2-4 是顶点 1 到顶点 4 的一条路径。
- 度(degree):一个顶点拥有的边数。对于有向图,入度(in-degree)表示有多少条边指向该顶点,出度(out-degree)表示有多少条边从该顶点指出。
图的表示¶
图的常用表示方式包括“邻接矩阵”和“邻接表”。以下使用无向图进行举例。
邻接矩阵¶
设图的顶点数量为 $n$ ,邻接矩阵(adjacency matrix)使用一个 $n \times n$ 大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,用 $1$ 或 $0$ 表示两个顶点之间是否存在边。
如下图所示,设邻接矩阵为 $M$、顶点列表为 $V$ ,那么矩阵元素 $M[i, j] = 1$ 表示顶点 $V[i]$ 到顶点 $V[j]$ 之间存在边,反之 $M[i, j] = 0$ 表示两顶点之间无边。
邻接矩阵具有以下特性。
- 顶点不能与自身相连,因此邻接矩阵主对角线元素没有意义。
- 对于无向图,两个方向的边等价,此时邻接矩阵关于主对角线对称。
- 将邻接矩阵的元素从 $1$ 和 $0$ 替换为权重,则可表示有权图。
使用邻接矩阵表示图时,我们可以直接访问矩阵元素以获取边,因此增删查改操作的效率很高,时间复杂度均为 $O(1)$ 。然而,矩阵的空间复杂度为 $O(n^2)$ ,内存占用较多。
邻接表¶
邻接表(adjacency list)使用 $n$ 个链表来表示图,链表节点表示顶点。第 $i$ 个链表对应顶点 $i$ ,其中存储了该顶点的所有邻接顶点(与该顶点相连的顶点)。下图展示了一个使用邻接表存储的图的示例。
邻接表仅存储实际存在的边,而边的总数通常远小于 $n^2$ ,因此它更加节省空间。然而,在邻接表中需要通过遍历链表来查找边,因此其时间效率不如邻接矩阵。
观察上图,邻接表结构与哈希表中的“链式地址”非常相似,因此我们也可以采用类似的方法来优化效率。比如当链表较长时,可以将链表转化为 AVL 树或红黑树,从而将时间效率从 $O(n)$ 优化至 $O(\log n)$ ;还可以把链表转换为哈希表,从而将时间复杂度降至 $O(1)$ 。
图的常见应用¶
如下表所示,许多现实系统可以用图来建模,相应的问题也可以约化为图计算问题。
表
顶点 | 边 | 图计算问题 | |
---|---|---|---|
社交网络 | 用户 | 好友关系 | 潜在好友推荐 |
地铁线路 | 站点 | 站点间的连通性 | 最短路线推荐 |
太阳系 | 星体 | 星体间的万有引力作用 | 行星轨道计算 |